(JPR&S)

Photo-degradation Effect on Naphtha Octane Number by Using UV Radiation

Hayder A.M. Hashim^{*}, Haroun A.K Shahad^{**}

* Ministry of Oil, Company of Oil Products Distribution

** Department of Mechanical Engineering, College of Engineering, University of Babylon, Babylon,

Iraq

الخلاصة

تم استخدام النفثا في هذا البحث كوقود اختبار حيث تم تعريضها الى الاشعة فوق البنفسجية تحت ظروف اختبار مختلفة (تعرض للاشعة فقط ، تعرض للاشعة بوجود التبريد ، تعرض للاشعة بوجود التبريد والعامل المحفز ، تعرض للاشعة بوجود التبريد والعامل المحفز والعامل المؤكسد ، تعرض للاشعة بوجود العامل المحفز والعامل المؤكسد) حيث تم تتبع عملية تكسير الاواصر ضمن تفاعلات التحلل الضوئي، فلوحظ تكسر اواصر عديدة نتيجة امتصاص الاشعة فوق البنفسجية ذات الطاقة العالية، ومن النتائج المتوقعة لهذا التحلل هو تغير العدد الاوكتاني للنفثا .

تم تحضير نماذج من وقود النفثا ومعاملتها تحت ظروف مختلفة باستخدام منظومتين :

- منظومة مفاعل الاشعة (Reactor Unit) : هذه المنظومة تعمل ضمن ضغوط مرتفعة نسبياً ، حيث لوحظ من خلال استخدام
 هذه المنظومة ان العدد الاوكتاني للنفثا يتناقص او يبقى ثابتاً تحت تأثير الاشعة فوق البنفسجية .
- منظومة خلية الاختبار الزجاجية (Cell Unit) : هذه المنظومة تعمل ضمن الضغط الجوي الاعتيادي حيث لوحظ من خلال
 استخدامها ان العدد الاوكتاني للنفثا يتغير بثلاث سلوكيات (ارتفاع ، انخفاض ، عدم تغير).

ومن خلال مجموعة الاختبارات تبين ان اكبر مقدار انخفاض في العدد الاوكتاني للنفثا تحت تأثير الاشعة يصل الى (11-) درجة ضمن ظروف تعرض النفثا الى الاشعة بوجود التبريد وثنائي اوكسيد التيتانيوم (TiO₂) كعامل محفز باستخدام منظومة الخلية الزجاجية ، بينما أعلى ارتفاع في العدد الاوكتاني للنفثا يصل الى (5.6) درجة ضمن ظروف تعرض النفثا الى الاشعة بوجود اوكسيد الزنك (ZnO) كعامل محفز و (ml/min) من تغذية الاوكسجين كعامل مؤكسد باستخدام منظومة الخلية الزجاجية . ولكي نفهم سلوك هذه التغيرات الحاصلة في العدد الاوكتاني للنفثا تم استخدام جهاز المطياف وكسيد باستخدام منظومة الخلية الزجاجية . ولكي نفهم سلوك (ZnO) كعامل محفز و (ml/min) من تغذية الاوكسجين كعامل مؤكسد باستخدام منظومة الخلية الزجاجية . ولكي نفهم سلوك هذه التغيرات الحاصلة في العدد الاوكتاني للنفثا تم استخدام جهاز المطياف (Gas chromatography Mass Spectrometry الاوكتاني وهي :

(Isooctane, Benzene, Toluene, P-xylene)

بحيث لوحظ بعد التحليل حدوث زيادة في نسبها في بعض النماذج ونقصان في نماذج اخرى . أخيراً تم استخدام جهاز التحليل الطيفي Fourier transform infrared spectroscopy (FTIR) لتحليل عدة نماذج قبل وبعد التعرض للاشعة لمعرفة الأواصر الكيميائية المتكونة والملغية بفعل تأثير الاشعة وباقي ظروف الاختبار.

الكلمات الدالة: التحلل الضوئي ، النفثا ، العدد الاوكتاني البحثي ، الاشعة فوق البنفسجية ، عملية التكسر بتأثير الاشعة

(JPR&S)

<u>Abstract</u>

In this work naphtha is exposed to ultraviolet rays under various conditions namely; UV exposure only, UV exposure with cooling, UV exposure with cooling and catalyst, UV exposure with Cooling, Catalyst and Oxidant O2 and UV exposure with Catalyst and Oxidant O2 to investigate the bonds cracking process (Photo-degradation or photolysis reactions) and its effect on naphtha octane number where several bonds are to be broken due to absorption the high energy of UV radiation. It is expected that naphtha octane number should be changed as a result of the Photo-degradation effect. Samples are prepared and treated with various conditions in a UV Reactor unit under prevailing pressure (elevated pressure). No systematic change in octane number is noticed but the octane number is either decreases or remains constant. Another technique which the cell unit is used. Samples are prepared and treated in the cell unit under atmosphere pressure. Three different behaviors of the change in naphtha octane number are resulted (decreasing, no change and increasing). Maximum decreasing in octane number is (-11 unit) occurred when naphtha is exposed to UV rays with cooling & TiO₂ catalyst in the cell unit, while the maximum increasing is (5.6 unit) occurred when naphtha is exposed to UV rays with ZnO catalyst & (2.1 ml/min) O2 feeding in the cell unit. In order to understand this behavior Gas chromatography Mass Spectrometry (GCMS) tests are conducted for some samples before and after UV exposure to study the changes in chemical composition of naphtha specially the changes in percentage of compounds that affect the octane number such as: Benzene, Toluene, Isooctane and Pxylene. It is noticed that the percentages of these compounds increased in samples in some tests and decreased in others. Also Fourier Transform Infrared spectroscopy (FTIR) tests are conducted for these samples before and after exposure to find the eliminated or created chemical bonds or functional groups of these bonds.

Keywords Photo-degradation, Naphtha, Research octane number (RON), UV radiation, photolysis process.

Introduction

Ultraviolet radiation (UV) is part of the non-ionizing region of the electromagnetic spectrum and comprise approximately 8–9 % of the total solar radiation [1]. It is one portion of the electromagnetic spectrum which travel through space. UV radiation is used in many industrial applications such as photo-degradation of hydrocarbon compounds.

In all organic compounds which contain the C-H bond and the C-C bond, the values of their bond energies and octane number depend on the structures of their molecules. It is well known that

hydrocarbon fuels with long straight chain molecules have low octane number while fuels with short chain, branched and cyclic molecules have high octane number.

Naphtha is one of hydrocarbon fuels which is produced from crude oil by several methods such as: fractionation of distillates or even crude petroleum, hydrogenation of distillates, solvent extraction, alkylation processes and polymerization of unsaturated olefinic compounds or may be a combination of them. [2]

It is a volatile and flammable fuel with specific gravity of (0.694) at 15C° and boiling range about $(30^{\circ}\text{C} - 200^{\circ}\text{C})$. It consists of a complex mixture of more than a hundred hydrocarbon compounds with carbon atoms range between $(C_4 - C_{15})$. [3]

When naphtha is exposed to UV radiation it will undergo a Photolysis (Photo-dissociation) process [4]. This process causes changes in chemical composition of naphtha and then in its octane number which depends on nature of the contained compounds in naphtha.

There were attempts of subjecting catalysts to varied sources of radiation to enhance their activity. some of these attempts were concentrated on the study of UV rays on the catalyst activity in conversion of unsaturated hydrocarbons. They found that if a catalytic reaction occurs in the presence of UV radiation , substantially complete conversion of reactants is obtained. Thus, they proved that the UV radiation exposure enhances the catalyst activity [5].

Two advantages for using of UV rays with hydrocarbon compounds, one of them is cracking which relates to hydrocarbon bonds and the other is enhancing of the catalyst activity which relates to catalysts in photo-catalysis process [6].

Ali H. A. Rashed et al. (2013)[7], used UV rays to improve the Octane number for Al-Dura product pool (70% Reformate + 30% Light Naphtha) in photo-degradation process in the presence of ZnO catalyst, with different exposure times . They raised the octane number by (5 degrees) at (8 hours) exposure.

The main aim of the present work is to study the changes in naphtha octane number under UV radiation exposure based on idea of C-C and C-H bonds breaking and re-structuring.

Experimental Rig and Measurements

<u>UV Reactor Unit</u>: This unit is manufactured to study the effect of UV exposure on naphtha octane number at different operating pressures (relatively elevated pressures). It consists of the following parts, see figs.(1 & 2).

 a) A cylindrical tank (0.26 m diameter, 1 m height with 50 L capacity) manufactured from stainless steel to obtain good reflection of UV rays from the tank inner walls.

- b) A motor mounted on the top cover of the tank used to drive the mixer inside the tank at 20 RPM.
- c) Three UV lamps each of (100 W/m²) are inserted in three sleeves manufactured from quartz to obtain optimum transmissivity of UV rays. These sleeves are fixed by Teflon bushes and rubber O-rings in the holes through the top cover of the tank. The rubber O-rings are used to prevent pressure leakage between the sleeve wall and the Teflon bush.
- d) Thermometer for temperature recording before and after the test.
- e) Pressure gauge to record the tank pressure before and after the test.
- f) Safety valve for pressure release.
- g) Drainage value at the base of the tank to empty a charge (a sample) after each test.
- h) Cooling water tube $(0.5 \text{ m} \times 0.5 \text{ m} \times 0.7 \text{ m})$ contain cooling water.
- i) Submerged water pump (pumping height of 1.8 m) to pump the cooling water from cooling tub to the water distributor.
- j) Water distributor which is a perforated tubular ring with 17 holes, each hole diameter of (3 mm). It is installed around the tank near the top cover at a height of (1.1 m) above the submerged water pump and used to distribute the cooling water on the outer surfaces of the tank for cooling if necessary.

UV Cell Unit : This unit operates under atmospheric pressure. It consists of the following parts and auxiliary tools:

- a) Two concentric glass vessels are formed as a cell with annulus space used for cooling water, so that the fuel sample is put in the inner vessel.
- b) Mixing capsule is immersed inside the cell for sample rotation.
- c) Magnetic stirrer is used to rotate the mixing capsule inside the test sample under effect of magnetic field.
- **d)** Cooling system is used to cool the cell during the test and to keep the sample temperature at required value.
- e) UV lamp of (75 W/m²) is fixed by standing over the cell. The lamp is partially enveloped to concentrate the rays in direction of a sample.
- f) Air feeder with air flow rate of (10 ml/min) is used as an Oxygen source.
- **g)** Filtering sheets, graduated cylinder, funnel, electronic balance, burette, thermometer and sample bottle are used. See figs. (3&4).

Sample Preparation and Test Procedure

Naphtha samples of 40 L for UV Reactor Unit or (500 ml) for UV Cell Unit are prepared. Each sample is mixed with catalyst for 20 min before UV exposure. The Octane number of the sample is measured either in CFR engine or SHATOX Octane meter, GCMS and FTIR analysis are also conducted for sample before exposure. The temperature of the sample is recorded initially and during the test. Also the pressure inside the UV Reactor tank is recorded initially and during the test. The sample is then exposed to UV rays for a specified period under various conditions. Octane measurement, GCMS and FTIR analysis are conducted after exposure to investigate the changes in the molecular structure caused by the UV exposure.

CFR Engine and SHATOX Octane Meter

Cooperative Fuel Research (CFR) engine is a 4-stroke, SI engine with a single-cylinder and variable compression ratio used to measure the fuel octane number, see fig. 5. Its Compression Ratio (CR) varies from 4.5 to 16 quickly and accurately by moving the cylinder head with respect to the piston [8] SHATOX Octane Meter is a portable device used to measure the fuel Octane number depending on comparison between characteristics of the test sample and these of standard gasoline stored in the internal memory of its microprocessor [9], see fig. (6). It is calibrated against the CFR engine as shown in fig.(7).

Gas Chromatography Mass Spectrometry (GCMS) Analysis

It is an apparatus used in the separation, identification and quantification of complex mixtures. The determination of these compounds is very difficult by the standard MS library. Therefore, the retention time was used as an index for the GC qualitative analysis [10]. The changes in the main effective compounds (i.e. compounds that affect the octane number) is determined by comparing the GCMS results before and after UV exposure. The octane number change may be interpreted according to the qualitative and quantitative changes in these compounds.

Fourier Transform Infrared Spectroscopy (FTIR) Analysis

This apparatus provides crucial information about the molecular structure of organic and inorganic components [11]. The FTIR technique is based on the absorption of IR radiation which occurs when photons transfer to sample molecules. These molecules are excited to a higher energy states [12] causing vibrations of molecular bonds (i.e. bending, stretching, rocking, twisting, wagging and out-of-

plane deformation). Those excitations occur at varying frequencies (wavenumbers of range about 4000 -400 cm^{-1}) in the IR region of the electromagnetic spectrum.

Results and Discussion

The results are divided into five groups according to the tests conditions:

1.Naphtha Exposed to UV Rays Only

The results of these tests are shown in table 1 & fig.8 .These results show a fluctuating response in the change of naphtha RON when exposed to UV rays only. It decreases to a minimum value of 51.3 after one hour exposure (initial RON 54.5) and then increases to 56 after two hours exposure and then decreases. This fluctuating in Octane number may be attributed to the effect of photolysis (Photodissociation) process.

It is known that the bonds of the branched compounds (iso-paraffin) are weaker than those in the straight chain compounds (n-paraffin) because the branched compound molecules are more compact with less surface area. This means that the intermolecular attractive forces of the branched compounds are smaller. Therefore, the broken bonds due to UV exposure are more in the branched compounds than in the straight chain compounds. In other words, the branches are broken and may be converted into small straight chain compounds. On the other hand, some of the UV energy may be used to break the bonds of straight chain molecules and converted them to branched molecules. As it is known that the RON of straight chain compounds (n-paraffins) is less than that of branched compounds (iso-paraffins), as shown in fig. (9) the net effect of these two restructuring processes may cause the fluctuation in Octane number changes.

2.Naphtha Exposed to UV Rays with Cooling

The results of these tests are shown in table (2) & fig. (10). These results indicate that no change occurs in the Octane number when naphtha is exposed to UV rays with the existence of cooling. An important fact may be concluded in these tests, that the cooling inhabits the Photolysis activity.

In other words, during the UV exposure with temperature rise process the interaction between photons and fuel molecules may occur causing the crack of the bonds of that molecules, whereas the cooling process inhibits that interaction and protects the molecules against the UV exposure effect.

3.Naphtha Exposed to UV Rays with Cooling and Catalyst

The results of these tests are shown in table (3) & fig. (11). These results exhibit that there is sever drop in the RON between (0.5 - 1 hr) of UV exposure reaching to (-11 unit). After two hours exposure the drop becomes (-6.4 units) only.

When a catalyst is added to the fuel and exposed to UV rays the photo-catalysis process will occur (i.e. the acceleration of photoreaction in the presence of a catalyst). In this process electrons of catalyst molecules are excited by UV photons and transferred from the valence band to the conduction band, leaving positive holes in the valence band, see fig. (12). The ultimate goal of the process is to have a reaction between the excited electrons with an oxidant to produce a reduced product, and also a reaction between the generated holes with a reductant to produce an oxidized product [13]. If there is no capturer for the electrons in conduction band (active electrons), as in this test, they return quickly to their valence bands and react with the holes (Recombination process).

Titanium dioxide (TiO_2) and Zinc oxide (ZnO) are used as a suitable catalysts. They are both semiconductors each of them have a band gap energy of (3.2 eV) [14]. The fluctuation in the RON change that is exhibited in these results may be attributed to the recombination process which occurs in the absence of capturer. Therefore only the photolysis effect will be existed.

4.Naphtha Exposed to UV Rays with Cooling, Catalyst and Oxidant O₂

Oxygen is known to act as a capturer of electrons that exist in the conduction band to generate radicals which may lead to production of high RON compounds. Air is used as a source of oxygen in this work in the presence of catalyst to improve RON of naphtha. Two tests are carried out with air flow rate of 10 ml/min (oxygen flow rate of 2.1 ml/min). In the first test TiO_2 is used as catalyst and the results are shown in table (4) and fig. (13) while in the second test ZnO is used as catalyst and the results are shown in table (5) and fig. (14).

The results of TiO_2 test show a decrease in the RON, while the results of ZnO test show an increase in the RON value. This means that ZnO is more effective than TiO_2 in photo-catalysis process with the presence of O_2 oxidant which acts as a capturer for the active electrons in conduction band of catalyst molecules.

5.Naphtha Exposed to UV Rays with Catalyst and Oxidant O₂

To investigate the effect of cooling on the photo-catalysis process samples with ZnO catalyst and oxidant are exposed to UV rays in the absence of cooling. The oxidant (which oxygen) flow rate oxidant. 2.1 ml/min.

The results are shown in table (6) and fig. (15). These results show a fluctuating decrease in octane number initially until two hours exposure then the octane number begins to increase. A maximum increase in octane number of 5.6 units occurs at 4 hrs exposure. At longer exposure time the RON

No.19

Journal of Petroleum Research & Studies

value decreases again. In these tests the oxidant reacts with the excited electrons in conduction band generating radicals (reduced product) in photo-catalysis process. These radicals may lead to production of high RON compounds.

GCMS Tests

Due to the large number of compounds contained in naphtha, it is difficult to follow all changes in the chemical composition of the sample. It is known that the aromatic compounds have high RON values in comparison with the other hydrocarbons groups [15] as shown in fig. (9). Therefore, the GCMS test is performed to understand the changes in aromatic group in addition to the iso-paraffin (Isooctane) which may be the cause of changes in the RON values.

The GCMS tests are performed on a sample of naphtha before and after (2 hrs) of exposure of UV rays as shown in figs. (16&17) tables (7&8). The RON change is (6.4 decrease) with the conditions mentioned in table (3).

Table (9) & fig. (18) Show the percentage change in the main effective four compounds. The results show that the Isooctane is generated after UV exposure test and the Toluene percentage is increased. Whereas, the percentages of Benzene is decreased and P-xylene is vanished. The RON decrease which happened in the sample after UV exposure test may be attributed to the changes of the effective compounds. Specially, after taking into account the RON values of these effective compounds as mentioned in table (10).

GCMS tests are also performed on a sample which shows an increase in octane number. The tests are performed before and after three hours exposure of UV rays and the result is shown in figs. (19 & 20) and tables (11&12). The RON change of this sample is 2.1 unit increase with the mentioned conditions in table (6).

Table (13) and fig. (21) show the percentage change in the main effective four compounds which are Isooctane, Benzene, P-xylene and Toluene . The results show that there are increases in the percentages of Isooctane, Benzene and P-xylene, while the Toluene is vanished completely. The increase in RON value which happened in this sample may be attributed to the increase in the percentage of the effective four compounds. specially, after taking into account the high RON values of these effective compounds.

FTIR Tests

FTIR tests are conducted before and after UV exposure for the sample which shows a decrease in RON which is the same as in the GCMS and the results exhibit the following changes shown in figs.22 & 23. The following changes are noted:

At frequency of (2175.5 cm⁻¹), (C \equiv C) bond from (alkynes) functional group is existed before UV exposure, but it is not apparent after the exposure.

At frequency of (2229.17 cm⁻¹), (C \equiv C) bond from (alkynes) functional group appears after the exposure.

This test is also carried out on the same RON increasing sample that mentioned in the GCMS test. Figs. (22 & 24) show the results of the FTIR test before and after UV exposure respectively. The results exhibited the following changes.

At frequency of (2175.5 cm-1), bond from (alkynes) functional group and at frequency of (1350.86 cm-1), bond from (alkanes) functional group are existed before UV exposure, but they are eliminated after the exposure.

At frequency of (1404.94 cm-1), bond from (aromatics) functional group and at frequency of (706.14), bond from (aromatics) functional group are created after the exposure.

Conclusions

The following conclusions can be drawn:

- 1. Photolysis effect under UV exposure only. This effect causes a fluctuating change in the octane number due to the difference in the broken bonds numbers between the straight chain and branched.
- 2. Cooling process inhabits effect under UV exposure. This effect causes no effect in the octane number.
- 3. UV exposure, cooling and catalyst also causes a fluctuating change in the octane number.
- 4. Using ZnO catalyst with UV exposure, cooling and oxidant gives positive octane number change as the results of photo-catalysis process while using TiO₂ catalyst gives negative change.
- 5. Photo-catalysis effect under UV exposure, ZnO catalyst and O₂ oxidant produces an increase in octane number due to production of high RON compounds.

References

- Meseret Tesema Terfa, et. al., 2014, (Effects of UV Radiation on Growth and Postharvest Characteristics of Three Pot Rose Cultivars Grown at Different Altitudes), Elsevier, Journal of Scientia Horticulturae, Vol.(178), pp (184–191).
- 2. Amna Kamal-eldin Tag-elsir et. al., 2013, (Production of gasoline from light naphtha by isomerization), University of Khartoum, Department of Chemical Engineering.
- Marcio V. Reboucas, et. al., 2003, (Arsenic determination in naphtha by electrothermal atomic absorption spectrometry after preconcentration using multiple injections), J. Anal. At. Spectrom., Vol. (18), pp(1267–1273).
- Anuvab Mandal, et. al., 2015, (Photoabsorption and photodissociation studies of dimethyl sulphoxide (DMSO) in the 35,000–80,000 cm–1 region using synchrotron radiation), Elsevier, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. (156), pp (47-57).
- 5. Francis William Kirsch, Patented Apr. 6, 1971, (Conversion of Unsaturated Hydrocacarbons in The Presence of a Catalyst and Ultraviolet Radiation), United States Patent office.
- 6. Hayder A. M. Hashim, 2017, (Improving Fuel Octane Number by Using Ultraviolet Rays), Thesis Submitted to mechanical Engineering at University of Babylon.
- Ali H. Ali Rashed, et. al., July, 2013, (Improving of Gasoline Octane Number by Using UV Rays in Photo Degradation Process), Journal of petroleum research & studies, ISSN-2220-5381, NO.7, pp(A1 – A10).
- 8. Giuseppe Genchi and Emiliano Pipitone, (November 2014), (Octane Rating of Natural Gas-Gasoline Mixtures on CFR Engine), SAE Int. J. Fuels Lubr., Vol. (7), Issue 3.
- Munther A. Mussa, 17th to 18th March 2016, (Experimental Investigation of Adding Albocarbon on Otto Engine Efficiency), 4th International Conference On Advances in Civil, Structural and Mechanical Engineering – CSM, Birmingham, United Kingdom.
- 10.Isabel Duarte Coutinho, et. al., oct./ dec., 2009, (Gas Chromatography-Mass Spectrometry (GC-MS) and evaluation of antioxidant and antimicrobial activities of essential oil of Campomanesia adamantium) (Cambess.) O. Berg (Guavira), Brazilian Journal of Pharmaceutical Sciences, No.4, Vol.(45).
- 11. Yanyan Chen, et. al., 2015, (Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review), Int. J. Mol. Sci., Vol. (16), pp (30223–30250).

- 12.Parikh S. J. and Chorover J. 2005, (FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida, GB-1. Geomicrobiol. J.), Vol.(22), pp (207–218).
- 13.Gaëlle Carré, et. al., April 2014, (TiO₂ Photocatalysis Damages Lipids and Proteins in Escherichia coli, Applied and Environmental Microbiology), Vol. (80), No. (8), pp(2573–2581).
- 14.Kaur S., 2007, (Light Induced Oxidative Degradation Studies of Organic Dyes and Their Intermediates), Thapar University, India.
- 15. Albahri T. A., et. al., 2002, (Octane Number and Aniline Point of Petroleum Fuels), Journal of Fuel Chemistry Division Preprints Vol. 47(2), 710.
- 16.An American National Standard (Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel), ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, Designation: D 2699 – 04a.
- 17.Julius S., 1990, (Octane-Enhancing Zeolitic FCC Catalysts, Scientific and Technical Aspects), Vol. 42, CRC Press.

Fig. (1) Reactor Unit.

Fig. (2) Schematic Reactor Unit.

Fig. (3) The Cell Unit.

Fig. (4) Schematic Cell Unit.

- A—Air humidifier tube
- B—Intake air heater
- C—Coolant condenser
- D—Four bowl carburetor
- E-C.R. change motor
- F-CFR-48 crankcase
- G—Oil Filter
- H—Ignition Detonation meter
- J-Knockmeter

Fig. (5) CFR Engine for RON & MON Testing [16].

Fig. (6) SHATOX Octane Meter

Fig. (7) Calibration of SHATOX Octane Meter.

Fig. (8) Results Of Naphtha Exposed To UV Radiation.

Conditions	Time	Pressure	Temperature		RON	RON	RON
of test	of test	increase	(C	°)	before	after	change
	(hr)	(bar)	Before	Before After		test	
			test	test			
Naphtha	1	0.18	23	35	54.5	51.3	- 3.2
exposed to UV	1.5	0.21	24	35	54.5	53	- 1.5
radiation only .	2	0.26	23	37	54.5	56	+ 1.5
	2.5	0.28	23	38	54.5	52	- 2.5
	3	0.31	22	38	54.5	53.5	- 1

Table (1) Results Of Naphtha Exposed To UV Radiation.

Fig. (10) Results Of Naphtha Exposed To UV Radiation With Cooling.

Conditions of	Time of	Pressure	Temperature		RON	RON	RON
test	test	increase	(C°)	before	after	change
	(hr)	(bar)	Before	After	test	test	
			test	test			
Naphtha	1	0.16	24	25.5	54.5	54.5	No
avnosod							change
exposed	2	0.17	24	25.5	54.5	54.5	No
to UV radiation							change
with cooling	3	0.19	24	25.5	54.5	54.5	No
with cooling							change

Table (2) Results Of Naphtha Exposed To UV Radiation With Cooling.

Fig. (11) Results of Naphtha Exposed To UV Radiation With Cooling & TiO₂ Catalyst.

Conditions of test	Time	Pressure	Temperature		RON	RON	RON
	of test	increase	(C	(C°)		after	change
	(hr)	(bar)	Before	After	test	test	
			test	test			
Naphtha exposed	0.5	0.11	25	25	54.5	50.9	- 3.6
to UV radiation	1	0.15	25	25	54.5	43.5	- 11
with cooling	2	0.17	25	25	54.5	48.1	- 6.4
& TiO ₂ catalyst							

Table (3) Results of naphtha exposed to UV radiation with cooling & TiO₂ catalyst.

Fig. (12) Photo-Catalysis Process

Fig. (13) Results of naphtha exposed to UV rays with cooling, TiO₂ catalyst & (2.1 ml/min) O₂ in the cell unit.

Table (4) Results of naphtha exposed to UV rays with cooling, TiO2 catalyst & (2.1 ml/min) O2 in
the cell unit.

Conditions of test	Time of	Pressure	Temperature		RON	RON	RON
	test	increase	(C ^c	(C°)		after	change
		(bar)	Before	After	test	test	
			test	test			
Naphtha exposed to	20 min	0	25	25	51.2	51.7	+0.5
UV lamp of (75 W/m^2)	40 min	0	25	25	51.2	49.7	- 1.5
	1 hr	0	25	25	51.2	48.2	- 3
with cooling, TiO_2							
catalyst & (2.1							
ml/min) O ₂ .							

Fig. (14) Results of naphtha exposed to UV rays with cooling, ZnO catalyst & (2.1 ml/min) O₂ in the cell unit.

Table (5) Results of naphtha exposed to UV rays with cooling, ZnO catalyst & (2.1 ml/min) O2 in	n
the cell unit.	

Conditions of test	Time of	Pressure	Temperature		RON	RON	RON
	test	increase	(Cʻ	")	before	after	change
	(hr)	(bar)	Before	After	test	test	
			test	test			
Naphtha exposed to UV	0.5	0	25	25	51.2	48.2	- 3
lamp of (75 W/m^2) with	1	0	25	25	51.2	49.7	- 1.5
cooling, ZnO catalyst &	1.5	0	25	25	51.2	49.7	- 1.5
(2.1 ml/min) O ₂ .							

Fig. (15) Results of naphtha exposed to UV rays with ZnO catalyst & (2.1 ml/min) O₂ in the cell unit.

Table (6) Results of naphtha exposed to UV rays with ZnO catalyst & (2.1 ml/min) O2 in the cellunit.

Conditions of test	Time of	Pressure	Temperature		RON	RON	RON
	test	increase	(Cʻ	")	before	after	change
		(bar)	Before	After	test	test	
			test	test			
Naphtha exposed to UV	20 min	0	25.5	26	51.2	51.5	+ 0.3
lamp of (75 W/m^2) with	40 min	0	25.5	26.6	51.2	49.5	- 1.7
ZnO catalyst & (2.1	1 hr	0	25.5	27.1	51.2	50.2	- 1
ml/min) O ₂ .	1.5 hr	0	25.5	27.7	51.2	50.2	- 1
	2 hr	0	25.5	28.1	51.2	52.0	+ 0.8
	3 hr	0	25.5	28.7	51.2	53.3	+ 2.1
	4 hr	0	25.5	29.4	51.2	56.8	+ 5.6
	5 hr	0	25.5	29.9	51.2	51.9	+ 0.7

File :D:\HAYDER1.D Naphtha before UV exposure test Operator : Acquired : 2 Jun 2016 11:05 using AcqMethod ALI.M Instrument : CED Babel Sample Name: Misc Info : Vial Number: 1 Abundance TIC: HAYDER1.D\data.ms 1.6e+07 1.4e+07 1.2e+07 1e+07 8000000 6000000 4000000 2000000 0 Time--> 3.00 4.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 5.00 6.00 7.00 8.00

(JPR&S)

Fig. (16) GCMS Curve Of Sample Before Test

Table (7) Area percent report of sample before test

				Area Perce	ent Report	t	
Data Patl Data File Acq On Operator Sample Misc	n : D:\ = : HAYDER1 : 2 Jun : : :	.D 2016 11:0!	5				
ALS Vial	: 1 Samp	ple Multip	lier: 1				
Integrat: Integrate	lon Paramete or: ChemStat	ers: event: tion	з.е				
Method Title	: C:\MSDCH :	HEM/1/METHO	DDS\ALI.M				
Signal	: TIC: HA	AYDER1.D\da	ata.ms				
peak R.T. # min	first max scan scar	last PK	peak height	corr. area	corr. % max.	% of total	
1 2.273 2 2.381 3 2.567 4 2.597 5 2.847	16 25 27 40 44 65 67 69 70 103	5 27 BV 2 44 VV 2 5 67 VV 7 0 VV 112 VV 5	2 167559 2 466352 2080204 1693774 5 4641700	3058917 21089482 107849575 21299733 645322485	0.30% 2.07% 10.57% 2.09% 63.26%	0.021% 0.142% 0.725% 0.143% 4.337%	
6 3.014 7 3.037 8 3.101 9 3.203 10 3.443	112 125 127 128 132 137 138 151 173 183	127 VV 6 132 VV 138 VV 2 173 VV 7 188 VV 7	5029338 5017827 6689917 8542180 9068612	298274611 105306809 176880798 938689343 538974697	29.24% 10.32% 17.34% 92.01% 52.83%	2.004% 0.708% 1.189% 6.308% 3.622%	
11 3.497 12 3.633 13 3.700 14 3.744 15 3.791	188 190 195 209 213 218 220 224 227 230	195 VV 2 213 VV 7 220 VV 4 227 VV 6 234 VV	8373462 10266958 10814369 11703234 11483634	251907110 3 719026947 5 327367087 4 338326247 4 302811241	24.69% 70.48% 32.09% 33.16% 29.68%	1.693% 4.832% 2.200% 2.274% 2.035%	
16 3.835 17 3.939 18 3.967 19 4.117 20 4.182	234 236 243 250 251 254 270 274 279 283	243 VV 3 251 VV 4 270 VV 4 279 VV 287 VV	10584536 10439125 10534478 8497178 12172794	5 427592694 5 349817917 3 794866603 301640582 4 373198901	41.91% 34.29% 77.91% 29.57% 36.58%	2.873% 2.351% 5.342% 2.027% 2.508%	
21 4.259 22 4.323 23 4.506 24 4.555 25 4.583	287 293 298 302 324 327 329 333 335 337	298 VV 3 324 VV 3 329 VV 3 335 VV 2 340 VV 2	11929701 13157228 6872182 10313950 10116790	545051449 3 102017590 109401703 0 253974226 0 162692544	53.43% 1 100.00% 10.72% 24.90% 15.95%	3.663% 6.856% 0.735% 1.707% 1.093%	
26 4.664 27 4.692 28 4.743 29 4.790 30 4.842	340 348 350 352 354 359 362 365 369 372	350 VV 3 354 VV 362 VV 2 369 VV 3 377 VV 2	12925661 12191741 12337728 10995592 11352838	403768650 180788594 386651515 278506571 329835217	39.58% 17.72% 37.90% 27.30% 32.33%	2.713% 1.215% 2.598% 1.872% 2.217%	
314.887324.984335.062345.116355.182	377378382391394402406409413418	382 VV 3 394 VV 2 406 VV 4 413 VV 421 VV 2	7113665 13094312 13712431 14369611 14833727	99888122 394432905 597221164 363934107 385959984	9.79% 38.66% 58.54% 35.67% 37.83%	0.671% 2.651% 4.013% 2.446% 2.594%	
365.214375.298385.422395.556405.593	421 422 427 433 444 450 464 468 471 473	427 VV 4 444 VV 2 464 VV 3 471 VV 4 478 VV 2	4702052 15436156 15129706 2657895 3715934	88022380 539014313 560523108 42178801 72084412	8.63% 52.84% 54.94% 4.13% 7.07%	0.592% 3.622% 3.767% 0.283% 0.484%	
415.652425.698435.731445.802455.864	478 481 484 488 489 492 497 502 507 510	484 VV 489 VV 497 VV 507 VV 3 513 VV	4337211 4897930 12939620 2309786 2236839	57234649 60209428 217857701 48842661 27867252	5.61% 5.90% 21.35% 4.79% 2.73%	0.385% 0.405% 1.464% 0.328% 0.187%	
					×		

(JPR&S)

Fig. (17) GCMS Curve Of RON Decreasing Sample After Test

Table (8) Area Percent Report Of RON Decreasing Sample After Test

								Area Percer	nt Report		
Dat	a Dath	· D.\									
Data	a File	: D:\	ו בסקח								
Acq	on	: 2	Tun 2	016	15.	38					
Ope	rator		o data da	010							
Sam	ple										
Mis	C	:							A		
ALS	Vial	: 1	Samp	le Mu	lti	01:	ier: 1				
Tat	ogwati	Dom	omotiou			-					
Inte	egratio	on Para	amete:	rs: e	ven	CS	.е				
LIIC	egraco	L. Cher	instat.	1011							
Met	hod	: C:\I	MSDCH	EM\1\I	MET	HOI	DS\ALI.M				
Tit	le	:									
Sig	nal	: TIC	C: HA	YDER3	.D\(dat	ca.ms				
peak	R.T.	first	max	last	P	K	neak	corr	corr	% of	
#	min	scan	scan	scan	T	Y	height	area	% max.	total	
						-					
1	2.367	24	38	40	PV		354692	12550776	0.83%	0.086%	
2	2.539	40	61	62	VV	3	1639626	73523730	4.87%	0.501%	
3	2.573	62	66	68	VV	-	1841590	39274868	2.60%	0.268%	
4	2.831	100	110	108	VV	6	4040493	525768404	34.83%	3.584%	
5	2.914	108	112	114	VV	2	3713122	96523544	6.39%	0.658%	
6	2,967	114	119	120	vv	3	3909971	106099726	7.03%	0.723%	
7	3.007	120	124	128	vv	-	3967340	128572870	8.52%	0.876%	
8	3.055	128	131	133	VV		4092040	98405738	6.52%	0.671%	
9	3.115	133	139	140	vv	3	5074224	133645332	8.85%	0.911%	
10	3.202	140	150	174	vv	3	6167588	728756436	48.28%	4.968%	
11	3.392	174	176	179	VV	3	3030002	54934986	3.64%	0.374%	
12	3.554	179	198	211	VV	8	8337502	1037412726	68.73%	7.072%	
14	3.0/3	211	214	219	VV	2	8333211	20/093/29	17.758	1.8268	
15	3.846	224	237	242	VV	4	10392947	762806469	50 54%	5 200%	
						-			001010	0.2000	
16	3.894	242	244	282	VV	1	1019496	1 15094097	76 100.00	\$ 10.289%	
17	4.212	282	287	290	VV		7908322	262367884	17.38%	1.789%	
18	4.268	290	294	298	VV	2	12399211	336066966	22.26%	2.291%	
19	4.347	298	305	335	VV	7	12147900	1372107136	5 90.90%	9.353%	
20	4.636	335	344	350	VV	5	11010832	536558186	35.55%	3.658%	
21	4.721	350	356	357	vv	4	11639673	308146090	20.42%	2 101%	
22	4.756	357	360	363	VV		12681465	297096282	19.68%	2.025%	
23	4.800	363	366	372	vv	3	11256917	424086193	28.10%	2.891%	
24	4.866	372	375	383	VV	4	11172556	507066980	33.59%	3.457%	
25	4.936	383	385	390	VV	4	9103854	204084272	13.52%	1.391%	
20	F 040	200	200	100		-	10524002	400000000	20 610	2 2550	
20	5.042	390	399	403	VV	4	12534803	492282329	32.618	3.3568	
28	5 151	403	407	415	VV	00	10399703	4/200020	0 000	3.2215	
29	5.185	416	418	424	VV	2 2	12905391	422040291	27 96%	2 877%	
30	5.243	424	426	429	vv	-	13688759	233515404	15.47%	1.592%	
31	5.278	429	431	432	VV		4960995	63713964	4.22%	0.434%	
32	5.345	432	440	450	VV	2	14017232	608634068	40.32%	4.149%	
33	5.470	450	457	470	VV	2	13985827	606448461	40.18%	4.134%	
34	5.600	470	474	477	VV	3	2774771	46060442	3.05%	0.314%	
35	5.638	4//	4 / 9	484	VV		4274917	86053525	5.70%	0.587%	
36	5.694	484	487	489	vv		4595605	64957734	4.30%	0.443%	
37	5.773	489	498	502	vv		13104244	315715137	20.92%	2.152%	
38	5.831	502	505	511	VV	3	2770993	54251872	3.59%	0.370%	
39	5.897	511	514	518	vv	2	2503125	32043734	2.12%	0.218%	
40	5.951	518	522	523	VV	3	629548	7596624	0.50%	0.052%	
4.7	C 005		FOC	Fac		-		100010155	6 8 4 4		
41	6.005	523	529	532	VV	2	5315404	102318163	6.78%	0.697%	
43	6 125	541	538	541	VV	4	430/598	38204622	0.448	0.6628	
44	6.176	549	552	560	VV	2	3889544	48101335	2.038	0.2008	
45	6.271	560	565	571	PV		2547463	65393072	4.33%	0.446%	
							3				

No.	Effective	Retention time	Percentage before	Percentage
	compound	(min)	test %	after test %
1	Isooctane	3.347	0	0.374
2	Benzene	4.724	2.598	2.101
3	Toluene	3.021	0.708	0.876
4	P-xylene	4.154	2.508	0

 Table (9) The Changes In Percent Of The Effective Compounds According To The GCMS Tests.

Fig. (18) The Changes In Percents Of The Effective Compounds According To The GCMS Tests.

fable (10) RON Of The	Important Aromatic	Compounds And	Isooctane [17].
-----------------------	---------------------------	----------------------	-----------------

r

Compound	RON
Isooctane	100
Benzene	99
Toluene	124
P-xylene	146

(JPR&S)

Fig. (19) GCMS curve of sample before test

Table (11) Area percent report of sample before test

							Area Perce	ent Report	-		
Dat Dat Acc Ope Sam Mis ALS	a Path a File [On erator ple c Vial	: D:\ : HAY : 2 : : : : : : : 1	DER1. Jun 2 Samp	D 016 le Mu	11:05	ier: 1					
Int Int	egratio	on Par r: Che	amete mStat	rs: e ion	vents	.e					
Met Tit	hod le	: C:\\	MSDCH	EM\1\	METHO	DS\ALI.M					
Sig	nal	: TI	C: HA	YDER1	.D\da	ta.ms					
peak #	R.T. min	first	max	last	PK TY	peak height	corr. area	corr. % max	% of		
1 2 3 4 5	2.273 2.381 2.567 2.597 2.847	16 27 44 67 70	25 40 65 69 103	27 44 67 70 112	BV 2 VV 2 VV VV VV 5	167559 466352 2080204 1693774 4641700	3058917 21089482 107849575 21299733 645322485	0.30% 2.07% 10.57% 2.09% 63.26%	0.0218 0.1428 0.7258 0.1438 4.3378		
6 7 8 9 10	3.014 3.037 3.101 3.203 3.443	112 127 132 138 173	125 128 137 151 183	127 132 138 173 188	VV 6 VV 2 VV 7 VV 7	5029338 5017827 6689917 8542180 9068612	298274611 105306809 176880798 938689343 538974697	29.24% 10.32% 17.34% 92.01% 52.83%	2.004% 0.708% 1.189% 6.308% 3.622%		
11 12 13 14 15	3.497 3.633 3.700 3.744 3.791	188 195 213 220 227	190 209 218 224 230	195 213 220 227 234	VV 2 VV 7 VV 4 VV 6 VV	8373462 10266958 10814365 11703234 11483634	251907110 3 719026947 5 327367087 4 338326247 4 302811241	24.69% 70.48% 32.09% 33.16% 29.68%	1.693% 4.832% 2.200% 2.274% 2.035%		
16 17 18 19 20	3.835 3.939 3.967 4.117 4.182	234 243 251 270 279	236 250 254 274 283	243 251 270 279 287	VV 3 VV 4 VV 4 VV VV	10584536 10439125 10534478 8497178 12172794	427592694 349817917 794866603 301640582 373198901	41.91% 34.29% 77.91% 29.57% 36.58%	2.873% 2.351% 5.342% 2.027% 2.508%		
21 22 23 24 25	4.259 4.323 4.506 4.555 4.583	287 298 324 329 335	293 302 327 333 337	298 324 329 335 340	VV 3 VV 3 VV 3 VV 2 VV 2	11929701 13157228 6872182 10313950 10116790	545051449 102017590 109401703 253974226 162692544	53.43% 1 100.00% 10.72% 24.90% 15.95%	3.663% 6.856% 0.735% 1.707% 1.093%		
26 27 28 29 30	4.664 4.692 4.743 4.790 4.842	340 350 354 362 369	348 352 359 365 372	350 354 362 369 377	VV 3 VV 2 VV 2 VV 3 VV 2	12925661 12191741 12337728 10995592 11352838	403768650 180788594 386651515 278506571 329835217	39.58% 17.72% 37.90% 27.30% 32.33%	2.713% 1.215% 2.598% 1.872% 2.217%		
31 32 33 34 35	4.887 4.984 5.062 5.116 5.182	377 382 394 406 413	378 391 402 409 418	382 394 406 413 421	VV 3 VV 2 VV 4 VV VV 2	7113665 13094312 13712431 14369611 14833727	99888122 394432905 597221164 363934107 385959984	9.79% 38.66% 58.54% 35.67% 37.83%	0.671% 2.651% 4.013% 2.446% 2.594%		
36 37 38 39 40	5.214 5.298 5.422 5.556 5.593	421 427 444 464 471	422 433 450 468 473	427 444 464 471 478	VV 4 VV 2 VV 3 VV 4 VV 2	4702052 15436156 15129706 2657895 3715934	88022380 539014313 560523108 42178801 72084412	8.63% 52.84% 54.94% 4.13% 7.07%	0.592% 3.622% 3.767% 0.283% 0.484%		
41 42 43 44 45	5.652 5.698 5.731 5.802 5.864	478 484 489 497 507	481 488 492 502 510	484 489 497 507 513	VV VV VV VV 3	4337211 4897930 12939620 2309786 2236839	57234649 60209428 217857701 48842661 27867252	5.61% 5.90% 21.35% 4.79% 2.73%	0.385% 0.405% 1.464% 0.328% 0.187%		

(JPR&S)

Fig. (20) GCMS curve of RON increasing sample after test

Table (12) Area percent report of RON increasing sample after test

	Area Percent Report		
Data Path : C:\MSDC Data File : HAYDER Acq On : 5 Jul Operator : Sample : Misc :	HEM\1\DATA\ .D 2016 16:53		
ALS Vial : 1 Sam	ple Multiplier: 1		
Integration Paramet Integrator: ChemSta	ers: events.e tion		
Method : C:\MSDC Title :	HEM/1/METHODS/ALI.M		
Signal : TIC: F	AYDER7.D\data.ms		
peak R.T. first ma # min scan sca	x last PK peak corr. corr. n scan TY height area % max.	% of total	
1 2.298 18 2 2 2.798 30 9 3 2.949 102 11 4 2.994 119 12 5 3.147 124 14	8 30 PV 691226 19608238 1.05% 6 102 VV 5 7924225 1358718384 72.44% 6 119 VV 3 8887170 596412964 31.80% 2 124 VV 10341258 24029984 12.81% 3 161 VV 6 13900809 1756566173 93.65%	0.077% 5.331% 2.340% 0.943% 6.891%	
6 3.300 161 16 7 3.431 165 18 8 3.580 188 20 9 3.633 205 20 10 3.692 210 27	4 165 VV 9286702 156183286 8.33% 1 188 VV 6 13823212 1229499779 65.55% 1 205 VV 5 15749900 1078014847 57.47% 9 210 VV 2 16361194 337268044 17.98% 7 218 VV 4 17545369 628034848 33.48%	0.613% 4.824% 4.229% 1.323% 2.464%	
11 3.741 218 22 12 3.918 238 24 13 4.159 266 28 14 4.241 288 25 15 4.287 292 25	3 238 VV 6 18284583 1563551365 83.36% 7 266 VV 6 17185905 1875717621 100.00% 0 288 VV 4 20322999 1696890709 90.47% 1 292 VV 18759692 328066552 17.49% 7 320 VV 4 21654108 1846945748 98.47%	6.134% 7.359% 6.657% 1.287% 7.246%	
16 4.481 320 32 17 4.530 326 33 18 4.561 332 33 19 4.651 338 34 20 4.722 351 35	3 326 VV 3 14278014 250757439 13.37% 0 332 VV 2 17008928 419584365 22.37% 4 338 VV 2 15615474 325534451 17.36% 6 351 VV 3 20802944 965557759 51.48% 6 366 VV 7 19888410 1202449710 64.11%	0.984% 1.646% 1.277% 3.788% 4.717%	
21 4.829 366 37 22 4.965 380 38 23 5.044 393 39 24 5.106 405 40 25 5.169 411 47	0 380 VV 3 17718664 766815544 40.88% 9 393 VV 18537707 650250632 34.67% 9 405 VV 4 21811453 989179454 52.74% 8 411 VV 22297105 555324690 29.61% 6 420 VV 2 21335717 663223574 35.36%	3.008% 2.551% 3.881% 2.179% 2.602%	
26 5.206 420 42 27 5.288 425 43 28 5.413 443 44 29 5.451 452 45 30 5.550 463 46	1 425 VV 3 7635826 135148938 7.21% 2 443 VV 2 23518219 897394064 47.84% 9 452 VV 23082912 631390612 33.66% 4 463 VV 3 16789673 320486878 17.09% 7 470 VV 2 4936055 74590609 3.98%	0.530% 3.521% 2.477% 1.257% 0.293%	
31 5.586 .470 47 32 5.647 478 48 33 5.724 483 49 34 5.799 497 50 35 5.858 506 50	2 478 VV 2 6188018 129421610 6.90% 1 483 VV 7868783 105517150 5.63% 1 497 VV 2 19561047 450004203 23.99% 1 506 VV 3 437078 87703745 4.68% 9 513 VV 3341525 43561696 2.32%	0.508% 0.414% 1.765% 0.344% 0.171%	
36 5.977 513 52 37 6.018 528 53 38 6.046 532 53 39 6.096 538 54 40 6.149 546 54	5 528 PV 2 7820698 159616495 8.51% 1 532 VV 3 4150962 57597625 3.07% 5 538 VV 6214133 85808440 4.57% 1 546 VV 3 2196175 54089567 2.88% 8 553 VV 5197929 66524068 3.55%	0.626% 0.226% 0.337% 0.212% 0.261%	•
41 6.270 558 56 42 6.334 568 57 43 6.374 576 57 44 6.413 581 58 45 6.518 590 55	5 568 PV 3979463 90007675 4.80% 3 576 VV 2699019 42668432 2.27% 9 581 VV 838973 10460585 0.56% 4 590 VV 3771562 48556570 2.59% 8 601 VV 3 448014 10570390 0.56%	0.353% 0.167% 0.041% 0.190% 0.041%	

No.	Effective	Retention time	Percentage	Percentage	
	compound	(min)	before test %	after test %	
1	IsoOctane	3.347	0	0.613	
2	Benzene	4.724	2.598	4.717	
3	Toluene	3.021	0.708	0	
4	P-xylene	4.154	2.508	6.657	

Table (13) The changes in percents of the effective compounds according to the GCMS tests.

Fig. (21) The changes in percents of the effective compounds according to the GCMS tests.

Fig. (22) FTIR Curve of RON increasing sample before test

Fig. (23) FTIR Curve Of RON Decreasing Sample After Test

Fig. (24) FTIR curve of RON increasing sample after test