Effect of CO\textsubscript{2} phase on its water displacements in a sandstone core sample: experimental study

تأثير طور غاز ثاني أوكسيد الكربون على إزاحته للماء من نموذج مغذي

Ebraheam Al-Zaidi*, Xianfeng Fan**

*Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL, United Kingdom

**Corresponding author. Tel.: +44 0 131 6505678; fax: +44 0131 6506551.

E-mail address: x.fan@ed.ac.uk (X. Fan).

Abstract

CO\textsubscript{2} capture and storage have been considered as a key strategy to tackle CO\textsubscript{2} high concentrations in the atmosphere. The captured CO\textsubscript{2} is injected into deep saline aquifers, depleted hydrocarbon reservoirs and coal beds as gas, liquid, and/or supercritical phase. The CO\textsubscript{2} phase may affect its injection, migration, and displacement efficiency. Research work on CO\textsubscript{2} storage has mainly focused on the trapping mechanism, risk assessment, storage site selection, etc. However, CO\textsubscript{2} phase effect on its injection and displacement efficiency has largely been neglected. In this paper, experimental work was designed to investigate the impact of CO\textsubscript{2} phase on the pressure and production profiles as the experimental pressure increases.

The results show that CO\textsubscript{2} phase significantly affects the differential pressure profile, relative permeability of CO\textsubscript{2}, and residual water saturation in a sandstone core sample. The differential pressure profiles of gaseous CO\textsubscript{2} and supercritical CO\textsubscript{2} phases were significantly different from that of liquid CO\textsubscript{2} phase, particularly before the CO\textsubscript{2} breakthrough. The increase in the experimental pressure caused an increase in the differential pressure profile of the subcritical CO\textsubscript{2} phases (gaseous and liquid CO\textsubscript{2}) but a reduction in that of the supercritical phase. The relative permeabilities of the three CO\textsubscript{2} phases were in the range of 11-21 % while the residual water saturations (S_{wr}) were in the range of 36 to 42 %. In general, the relative permeabilities of both gaseous and supercritical CO\textsubscript{2} phases are quite close. The relative permeabilities of liquid CO\textsubscript{2} phase are higher. The increase in pressure caused an increase in the relative permeability and a decline in the S_{wr}. The scale of the change depends on CO\textsubscript{2} phase. Thus, our results reveal the high impact of CO\textsubscript{2} phase on its injection, and displacements efficiency.
1 Introduction

CO₂ capture and storage (CCS) is considered to be one of the promising techniques to reduce CO₂ emissions to the atmosphere. The captured CO₂ is stored into deep saline aquifers, depleted oil and gas reservoirs [1], or unminable coal beds [2, 3]. The injected CO₂ can also be utilized as a working fluid to enhance hydrocarbon recovery from oil and gas reservoirs, to enhance methane production from coal beds, or to extract geothermal heat from subsurface formations [2, 4]. In these subsurface formations, the injected CO₂ can exist in gas, liquid or supercritical phase as shown in Fig. (1) [5-7].

CO₂ phase has a significant impact on its wettability, and the interactions between CO₂, reservoir rock and the fluids in reservoir pore space. For example, the supercritical CO₂ has an ability higher than gas and liquid CO₂ to alter reservoir rocks towards less water-wetting state [8, 9]. An abrupt change in CO₂ phase can result in a significant change in its viscosity and density [3, 10]. Therefore, the change in CO₂ phase might have a significant impact on the differential pressure, entrance pressure, CO₂ injection rate, CO₂ displacement rate, CO₂ migration, and finally the stability of stored CO₂ and the efficiency of enhanced oil and gas recovery [5, 11].

Extensive experimental and numerical research work has been designed to investigate CO₂ wetting and interfacial tensions under different pressure and temperature, relative permeability, capillary pressure-saturation, the impact of porosity heterogeneity on CO₂ migration and injection, CO₂ level and distribution, the sealing efficiency of caprocks, the effect of viscous stability on CO₂-brine flood front during immiscible displacements, and the optimization of CO₂ injection to maximize both CO₂ storage and enhance oil recovery (EOR), etc. The investigations have been conducted in a wide range of sandstone and carbonate core samples, such as: feldspar-rich sandstone, Berea sandstone, Nugget
sandstones, Tako sandstone, Bentheimer sandstone, Rothbach sandstone [4, 5, 7, 13-25]; [26, 27]. However, the extensive research has been focused on various aspects of supercritical CO₂. For example, Herring et al. investigated the capillary pressure-saturation for supercritical CO₂ (scCO₂) and brine at 37.5 °C and 83 bars [13]. Saeedi et al. [25] investigated scCO₂-brine displacements in different sandstone samples with the emphasis on the effect of cyclic CO₂-brine on differential pressure and saturation profiles. Chang et al. [28] conducted both drainage and imbibition CO₂-core flooding of supercritical CO₂ and water on low permeability sandstone core samples under a pressure higher than 80 bars and at a temperature of 40 °C to study the dynamic drainage process of water by supercritical CO₂.

To the authors’ best knowledge, there is no such investigations into the effect of CO₂ pressure on the differential pressure profile and production performance as a function of CO₂ phase. In this paper, laboratory dynamic CO₂-water drainage experiments were performed to investigate the impact of CO₂ pressure on the differential pressure profile, relative permeability of CO₂, and residual water saturation. The drainage floodings have been conducted injecting pure gaseous CO₂, liquid and supercritical CO₂ phase into the deionised water saturated core sample. The results would provide important insights about the impact of CO₂ phase on its injectivity, water or oil production rate, CO₂-water displacement and CO₂ migration in a sandstone reservoir.

2 Materials and Experimental Setup

The unsteady state dynamic drainage experiments (CO₂-water displacements) were conducted on a prototypical sandstone core sample from Guillemot A Field in the North Sea. The core sample is 1 inch in diameter and 3 inches in length as shown in Fig. (2).

The average porosity and absolute water permeability of the core sample were about 14% and 15.8mD, respectively. Before the CO₂-water displacement, the pore volume, porosity and absolute water permeability were determined. The weight difference between the dry and the wet core sample was used to calculate the core sample pore volume and porosity. The absolute water permeability was calculated by using the average pressure difference and the water flowrate under quasi-steady state conditions. The water used in this study was deionized.
2.1 Experimental Setup

Fig. (3) Shows the core-flooding setup used to conduct the CO₂ (gas-liquid-supercritical)–water displacements. The experimental system consists of two high-pressure syringe pumps (Teledyne ISCO, Lincoln, NE, United States) with flowrate ranging from 0.0001 to 25 ml/min for CO₂ injection and CO₂ collection, a core holder, a water bath (GD 100) to control the temperature, a confining pressure pump (CM400) and a vacuum pump (Edwards, Model E2M5). A LabVIEW program was built to record the readings from the pressure transducers (UNIK 5000 pressure-sensor, 0-100bar) at the inlet and the outlet of the core sample.

![Experimental Setup Diagram]

Fig. (3) The experimental setup for CO₂ (gas-liquid-supercritical)–water displacements.

3 CO₂- water displacement procedure

The unsteady state CO₂-WATER displacements, gasCO₂-WATER displacement, LiquidCO₂-WATER displacement and supercriticalCO₂-WATER displacement were conducted on a sandstone core sample.
The core sample was wrapped into a shrinkable Teflon tube followed by a rubber sleeve and then placed inside the core holder. The core holder was mounted horizontally inside the water bath. The confining pressure was maintained at about 135 bars, which is always higher than the pore pressure to prevent fluid bypassing.

Prior to each flooding experiment, a constant pressure was applied to the entire system using the syringe pump at each end. The water bath was set to the required temperature.

During the experiment, the fluid flowrate and pressure were controlled by two high pressure syringe pumps (Teledyne ISCO, Lincoln, NE, United States) placed under room conditions. The transient behavior of the inlet pressure, the outlet pressure and the outlet fluid (water and CO₂) flowrate were closely monitored and analyzed. The inlet and the outlet pressure transducer readings were recorded every six seconds using the LabVIEW software, in order to calculate the pressure difference between the inlet and the outlet. At the end of each experiment, the core sample weight was measured using a Sartorius weighing scale with a resolution of 0.0001g. The residual water saturation (Swr) with respect to the injected CO₂ was calculated as the ratio of the produced water to the total core pore volume.

It should be noticed that since the injecting and collecting pumps are placed under room temperature, the injected CO₂ experiences an expansion. The density of the injected CO₂ varies as the CO₂ enters the water bath. The density ratio (defined in Equation 1) suggested by Perrin and Benson [29] has been used to calculate the real injection rate inside the core sample. For instance, at experimental pressure of 40 bars, a flowrate of 1 cm³/min at 20 °C becomes 1.108cm³/min at 33 °C. However, at experimental pressure of 70 bars, it becomes 3.288cm³/min.

\[
\frac{d_{CO_2}^{20\circ C, 40\text{bar}}}{d_{CO_2}^{33\circ C, 40\text{bar}}}
\]

(1)

4 Results and discussions

To gain a deep insight into the CO₂-WATER dynamic drainage displacements and the effect of CO₂ phase, the inlet and outlet pressure, outlet CO₂ and water flow rates, the estimated residual water saturation and endpoint relative CO₂ permeability were measured and analyzed.

4.1 Effect of CO₂ phase on the differential pressure profile as experimental pressure increases.

Fig. (4) to Fig. (6) Show that the differential pressure profile is characterized by a high reduction, mainly during the first period (i.e before CO₂ breakthrough). This reduction occurs as the CO₂/water interface proceeds along the core sample, thereby a more viscous fluid (water) is being replaced by a less viscous fluid (CO₂) [30].

The results indicate that the differential pressure profile is a function of CO₂ phase, particularly during
the first period. During the first period, the differential pressure profile of liquid CO$_2$ characterized by a quasi-pressure reduction while that of gaseous and supercritical CO$_2$ phases characterized by a high reduction.

The results also show that the response of the differential pressure profile to the increase in the experimental pressure is a function of CO$_2$ phase, too. For subcritical CO$_2$ phases (gaseous and liquid CO$_2$), the increase in the experimental pressure led to an increase the differential pressure profile while for supercritical phase the increase in the pressure caused a reduction in the pressure differential pressure profile.

Fig. (4) shows that the increase in the experimental pressure led to an increase in the rate of the pressure difference (PD) oscillation, a rise in the maximum-pressure difference ($P_{d_{\text{max}}}$), a rise in the quasi-pressure difference, and a reduction in the time required to achieve the maximum pressure difference (corresponding time). The quasi pressure difference in this study refers to the pressure difference at the end of the core flooding. The rate of the change in the PD oscillations, pressure differences, and corresponding time depend on the magnitude of the experimental pressure. The highest change occurred as the experimental pressure increased from low (40 and 50 bars) to higher pressure displacements (70 bars).

For illustration, as the experimental pressure increased from 40 to 50 bars, the rate of PD oscillations increased by around 33% and the $P_{d_{\text{max}}}$ by about 2.50 % while the quasi pressure difference was constant at around 1 bar. The corresponding time declined by approximately 17 %. However, as the pressure increased from 50 to 70 bars, the PD oscillations increased by 225%, the $P_{d_{\text{max}}}$ by around 9%, and the quasi pressure difference by 165%. The corresponding time dropped considerably by around 78%. The high reduction in the corresponding time as the pressure increased from 50 to 70 bars can be related mainly to gas density and CO$_2$ injection rate. As pressure increases, the gaseous CO$_2$ became denser and the injection rate increased due to temperature difference, for more information see page 80. Hence, gaseous CO$_2$ needed much less time to be compressed to the required pressure. On the other hand, the high increase in the quasi pressure difference can be related mainly to the increase in the applied viscous forces due to increasing viscosity and the injection injection rate because of gas expansion.

The maximum pressure differences can be related to the pressure drop due to viscous forces and that due to interfacial tension forces. As the experimental pressure increases, the pressure drop due to viscous forces increases while that due to interfacial forces reduces. This is because the increase in pressure causes an increase in gas viscosity and CO$_2$ injection rate as well as a reduction in the CO$_2$-
water IFT tension and increase in the contact angle because of increasing CO₂ solubility [31, 32]. Hence, the observed increase in the maximum pressure difference with increasing pressure is because viscous forces became larger than interfacial forces.

It should be noticed that the observed fluctuations in the differential pressure profile (PD oscillations) are due to the ratio of the interfacial forces to viscous forces. The phenomenon of PD oscillations occurs when the interfacial forces becomes large enough to overcome viscous forces. The result is a complete blocking of water production until the pressure builds up to overcome the interfacial forces and open closed flow paths [30]. The complete blocking of production occurs due to the occurrence of the re-imbibition process. It has been observed by Plug and Bruining that an alternate drainage and imbibition process occurs during CO₂ injection when the measurements close to the critical point of CO₂. This has been attributed to small perturbations that change the density and viscosity of CO₂ and temporary CO₂-wet behaviour [3]. The phenomenon of PD oscillations has been investigated in depth in a different study.

![Fig. (4) Effect of pressure on the differential pressure profile of gas CO₂-water displacements conducted at 0.4 ml/min, 33 °C.](image)

Fig. (5) shows that as the experimental pressure of liquid CO₂ increased, the maximum pressure difference increased by 17% (from 0.463 to 0.543 bar), and the quasi-pressure difference by around 5% (from 0.222 to 0.233 bars). The corresponding time was small and constant at around 0.5 min. Interestingly, the PD oscillations disappeared.
The disappearance of the oscillations and the small and constant corresponding time can be related to the dense nature of liquid CO$_2$ and the negligible impact of interfacial forces. The dense nature means that the pressure drop due to viscous forces is always higher than that due to interfacial forces, thereby no PD oscillations. Moreover, the dense nature of liquid CO$_2$ means much less corresponding time is required to reach the maximum pressure difference in comparison to gaseous CO$_2$. For instance, as the CO$_2$ phase changed from gaseous to liquid CO$_2$ state, the corresponding time decreased by around 71 % (from 1.7 to 0.5 min) as shown in Fig. (4) and Fig. (5).

![Fig. (5) Effect of pressure on the differential pressure profile of liquid CO$_2$-water displacements conducted at 0.4ml/min, and 20 $^\circ$C.](image)

On the other hand, Fig. (6) reveals that increasing pressure caused a significant reduction in the maximum and quasi pressure differences and the corresponding time of supercritical CO$_2$ phase. As the pressure raised from 75 to 90 bars, the maximum-pressure difference dropped by around 47 %, the quasi-pressure difference by around 39 %, and the corresponding time by around 68%.

The largest change in the maximum and the quasi-pressure differences occurred as the pressure increased from 80 to 90 bars. When the pressure increased from 75, 77, 80 to 90 bars, the maximum pressure difference decreased from around 1.121, 0.9275, 0.767, to 0.599 bars, and the quasi-pressure difference declined from 0.363, 0.3045, 0.281 to 0.221 bars. However, the corresponding times are 1.9, 0.8, 0.4, and 0.6 mins.

Fig. (6) suggest also that as the pressure increases, the differential pressure profile of supercriticalCO$_2$-water displacement transformed from the likeness of a gaseous CO$_2$ behaviour to a liquid CO$_2$ behaviour. For instance, the differential pressure profile of the 75 bars-experiment is very similar to that
of a typical high-pressure gasCO₂-water displacement while that of 90 bars is virtually identical to that of a typical liquid CO₂-water displacement. The similarity to a gaseous or liquid CO₂ behaviour has been decided based on the differential pressure profile, mainly during the first period. The differential pressure profile of the experiments conducted at gaseous CO₂ conditions characterizes by a sharp pressure reduction during the first period. On the other hand, the differential pressure profile of the experiments conducted at liquid CO₂ conditions characterizes by a quasi-stable pressure profile during the first period.

The reduction in the differential pressure profile can be related mainly to the reduction in the interfacial tension forces due to the drop in the CO₂-water interfacial tension and the increase in contact angle because of the increase in CO₂ solubility [32, 33].

The transformation of the differential pressure profile with increasing pressure proposes that the interfacial and viscous properties of supercritical CO₂ phase become similar to that of gaseous CO₂ phase at low pressures and similar to that of liquid CO₂ phase at high pressures. The liquid CO₂ characterized by a higher impact of viscous forces and a lesser impact of interfacial forces forces in comparison to gaseous CO₂. With increasing pressure, the impact of the viscous forces become higher while the impact of the interfacial forces become lesser. This because the increase in the experimental pressure leads to an increase in the CO₂ density and viscosity as well as a decrease in the interfacial tension and an increase in the contact angle due to increasing CO₂ solubility [3, 5]. For instance, as the pressure increased from 75 to 90 bars, the scCO₂ density increased from 410.255 to 666.69 kg/m³, the CO₂ injection rate decreased from 0.798 to 0.506 ml/min, the viscosity increased from 33.3095 to 53.837 [10⁻⁶ (Pa s)], and the CO₂-water interfacial tension reduced from around 28 to 25 mN/m (34).

Moreover, it is expected also that as the pressure increases, the wettability of liquid and supercritical CO₂ phases might become very close at high pressure conditions. For supercritical CO₂, a potential wettability alteration towards hydrophobic wetting state might occur as pressure increases [32]. However, for liquid CO₂, the potential hydrophobic wetting state might occur due to phase transformation [8]. Yang et al. 2005 observed that as gaseous CO₂ phase transformed to liquid CO₂, the wetting state becomes hydrophobic [8].
4.2 Effect of CO₂ phase on residual water saturation and relative permeability as experimental pressure increases

At the end of the core floodings, the volume of the produced water was measured, the system was depressurized to the atmospheric pressure to allow total degassing of the CO₂, and the core sample was weighed to obtain the residual water saturation. To calculate the relative CO₂ permeability using Darcy’s law, the average differential pressure and the average CO₂ flow rate of the last period were used. The CO₂ viscosity at the experimental pressure and temperature was calculated using NIST CHEMISTRY Webbook website [35]. The relative permeability of the CO₂ is calculated at the residual water saturation. The determination of the relative permeability of CO₂ and its variation with the investigated parameters is of practical interest for CO₂ sequestration in subsurface formations [36].

Table (1) reveals that the relative permeability of the three CO₂ phases were in the range of 11-21% while the residual water saturations in the range of 36-42%. Both gaseous and supercritical CO₂ gave close relative permeabilities. Liquid CO₂ gave the highest relative permeabilities. The increase in the experimental pressure led to an increase in the relative permeability of CO₂ ($K_{rCO₂}$) and a decline in the residual water saturation (S_{wr}). The scale of change depends on CO₂ phase. The increase in the $K_{rCO₂}$ can be attributed mainly to the increase in the CO₂ injection rate due to the high impact of gas expansion, for more information see page 80. The increase in injection rate might result in forcing the
CO₂ to flow through a wider range of pores of the core sample. The reduction in the S_{wr} can be attributed to the increase in the capillary number (Ca) and the reduction in mobility ratio (M).

For gaseous CO₂, increasing pressure from 40 to 70 bars at 33 °C caused the $K_{rCO₂}$ to increase by around 5.4 %, and the S_{wr} to decrease by around 4.7 %. The largest increase in $K_{rCO₂}$ and the highest reduction in the S_{wr} occurred as the pressure increased from low pressure displacements (40 and 50 bars) to high pressure displacements (70 bars). This can be attributed to a relatively high increase in the Ca and a high reduction in M.

For liquid CO₂, as the pressure increased from 40 to 70 bars at 20 °C, the $K_{rCO₂}$ increased very slightly by around 0.6 %, and the S_{wr} decreased by around 2.2 %. However, for supercritical CO₂, as the pressure increased from 75 to 90 bars at 33 °C, the $K_{rCO₂}$ increased significantly by around 8 %, and the S_{wr} decreased by around 1.5 %.

Table (1) Effect of pressure on the end-point relative permeability of CO₂, and residual water saturation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experiment</th>
<th>Effective permeability (mD)</th>
<th>Relative permeability (%)</th>
<th>Residual water</th>
<th>Mobility ratio</th>
<th>Capillary number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaseous CO₂</td>
<td>40-0.4ml/min-33 °C</td>
<td>1.768</td>
<td>11.3</td>
<td>42.44</td>
<td>46.26</td>
<td>5.265E-08</td>
</tr>
<tr>
<td></td>
<td>50-0.4ml/min-33 °C</td>
<td>1.987</td>
<td>12.7</td>
<td>40.89</td>
<td>44.56</td>
<td>6.250E-08</td>
</tr>
<tr>
<td></td>
<td>70-0.4ml/min-33 °C</td>
<td>2.613</td>
<td>16.7</td>
<td>37.79</td>
<td>36.10</td>
<td>2.504E-07</td>
</tr>
<tr>
<td>Liquid CO₂</td>
<td>60-0.4ml/min-20 °C</td>
<td>3.188</td>
<td>20.3</td>
<td>36.9</td>
<td>14.3315</td>
<td>2.174E-07</td>
</tr>
<tr>
<td></td>
<td>70-0.4ml/min-20 °C</td>
<td>3.248</td>
<td>20.7</td>
<td>36.3</td>
<td>13.3996</td>
<td>2.734E-07</td>
</tr>
<tr>
<td>Supercritical CO₂</td>
<td>75-0.4ml/min-33 °C</td>
<td>1.858</td>
<td>11.849</td>
<td>37.2</td>
<td>22.48</td>
<td>2.566E-07</td>
</tr>
<tr>
<td></td>
<td>77-0.4ml/min-33 °C</td>
<td>2.207</td>
<td>14.077</td>
<td>37.4</td>
<td>19.53</td>
<td>2.594E-07</td>
</tr>
<tr>
<td></td>
<td>80-0.4ml/min-33 °C</td>
<td>2.388</td>
<td>15.228</td>
<td>37.2</td>
<td>16.32</td>
<td>2.645E-07</td>
</tr>
<tr>
<td></td>
<td>90-0.4ml/min-33 °C</td>
<td>3.128</td>
<td>19.949</td>
<td>35.7</td>
<td>13.91</td>
<td>2.965E-07</td>
</tr>
</tbody>
</table>
5 Conclusion

In this paper, the effect of CO₂ phase on the pressure and production profiles of CO₂-water drainage floodings has been investigated as the experimental pressure increases. The investigations were conducted for the three phases of CO₂ (gas, liquid, and supercritical). The results indicate a considerable influence of the CO₂ phase on the differential pressure profile, relative permeability of CO₂, and residual water saturation. The relative permeabilities of the three CO₂ phases were in the range of 11-21% while the residual water saturations were in the range of 36 to 42%. Both gaseous and supercritical CO₂ gave close relative permeabilities. Liquid CO₂ gave the highest relative permeabilities. The increase in the experimental pressure led to an increase in the relative permeability of CO₂ ($K_{\text{rCO₂}}$) and a decline in the residual water saturation (S_{wr}). The scale of change depends on CO₂ phase.

The differential pressure profile is a function of CO₂ phase, particularly before CO₂ breakthrough. The differential pressure profile of liquid CO₂ characterized by a quasi-pressure reduction while that of gaseous and supercritical CO₂ phases characterized by a high reduction.

The response of the differential pressure profile to the increase in the experimental pressure is a function of CO₂ phase, too. For subcritical CO₂ phases (gaseous and liquid CO₂), the increase in pressure led to an increase the differential pressure profile while for supercritical phase the increase in the pressure led to a reduction in the pressure differential pressure profile.

For gaseous CO₂ phase, the increase in the experimental pressure led to an increase in the rate of the pressure difference (PD) oscillation, a rise in the maximum-pressure difference (P_{dmax}), an increase in the quasi-pressure difference, and a reduction in the time required to reach the Pdmax (the corresponding time). The highest change occurred as the pressure increased from low to high pressure (70 bars) displacements. As the experimental pressure increased from 40 to 50 bars, the rate of PD oscillations increased by around 33% and the Pdmax by about 2.50% while the quasi pressure difference was constant at around 1 bar. The corresponding time declined by approximately 17%. However, as the pressure increased from 50 to 70 bars, the PD oscillations increased by 225%, the Pdmax by around 9%, and the quasi pressure difference by 165%. The corresponding time dropped considerably by around 78%.

For liquid CO₂ phase, increasing the experimental pressure from 60 to 70 bars caused the maximum pressure difference to increase by 17% and the quasi-pressure difference by around 5%. The corresponding time was constant at around 0.5 min. The differential pressure profile does not show pressure difference oscillations.
On the other hand, increasing pressure for supercritical CO₂ phase caused a significant reduction in the maximum and quasi pressure differences as well as the corresponding time. As the pressure raised from 75 to 90 for the experiments, the maximum-pressure difference dropped by around 47 %, the quasi pressure difference by around 39 %, and the corresponding time by around 68%. The largest change in the maximum and the quasi pressure differences occurred as the pressure increased from 80 to 90 bars. The increase in the experimental pressure caused the differential pressure profile of scCO₂-water displacement to transform from the likeness of gas-displacement performance to that of liquid-displacement. For illustration, the differential pressure profile of the 75 bars-experiment is very similar to that of a typical high-pressure gasCO₂-water displacement while that of 90 bars-displacement becomes virtually identical to that of a typical LCO₂-water displacement.
References

34. Bachu S, Bennion DB. Interfacial tension between CO2, freshwater, and brine in the range of pressure from (2 to 27) MPa, temperature from (20 to 125)° C, and water salinity from (0 to 334 000) mg·L−1. Journal of Chemical & Engineering Data. 2008;54(3):765-75.
