No.27- (6) 2020

Journal of Petroleum Research & Studies (JPRS)

Production Optimization for Natural Flow and ESP Well A Case Study on Well NS-5 Mishrif Formation-Nasriya Oil Field

Hamzah Amer Abdulameer, Dr. Sameera Hamd-Allah. University of Baghdad / College of Engineering / Petroleum Engineering Department Corresponding Author Email: hamzawyofoil93@gmail.com

1- Abstract:

As the reservoir conditions are in continuous changing during its life, well production rate and its performance will change and it needs to re-model according to the current situations and to keep the production rate as high as possible.

Well productivity is affected by changing in reservoir pressure, water cut, tubing size and wellhead pressure. For electrical submersible pump (ESP), it will also affected by number of stages and operating frequency.

In general, the production rate increases when reservoir pressure increases and/or water cut decreases. Also the flow rate increase when tubing size increases and/or wellhead pressure decreases. For ESP well, production rate increases when number of stages is increased and/or pump frequency is increased.

In this study, a nodal analysis software was used to design one well with natural flow and other with ESP. Reservoir, fluid and well information are taken from actual data of Mishrif formation-Nasriya oil field/ NS-5 well. Well design steps and data required in the model will be displayed and the optimization sensitivity keys will be applied on the model to determine the effect of each individual parameter or when it combined with another one.

الانتاج الأمثل لبئر ينتج بالجريان الطبيعي و بواسطة المضخة الغاطسة دراسة على بئر 5-NS ينتج من مكمن المشرف حقل الناصرية النفطي

الخلاصة:

ان ظروف المكمن تتغير باستمرار خلال فترة الانتاج لذلك فان انتاجية الابار تتغيرتبعا لهذه الظروف. بسبب ما سبق فان الابار تحتاج الى اعادة تصميم من ناحية الاكمال او تغير ظروف التشغيل للحصول على اعلى انتاج ممكن في الظروف الحالية.

ان انتاجية الابار تتأثر بشكل اساسي بضغط المكمن و نسبة الماء الى النفط و حجم انابيب الانتاج و ضغط راس البئر. اما الابار التي تعمل بو اسطة المضخات الغاطسة فانها تتاثر ايضا بعدد مر احل المضخة و سرعة الدوران. بصورة عامة، فان معدل الانتاج يزداد باز دياد ضغط المكمن و نقصان كمية الماء الى النفط. كما ان الانتاجية تزداد ايضا بزيادة قطر انبوب الانتاج و نقصان ضغط راس البئر. اما بالنسبة للمضخات الغاطسة، فان معدل الانتاج يزداد بزيادة مر احل المضخة و سرعة دور انها.

في هذة الدراسة، سيتم تصميم بئرين احدهم ينتج بالدفع الطبيعي و الاخر بواسطة المضخة الغاطسة. تم استخدام بيانات حقلية حقيقية في عملية التصميم بالاعتماد على بئر NS-5 الذي ينتج من مكمن المشرف في حقل الناصرية النفطي جنوب العراق. ان عملية التصميم و ايجاد الحالة الانتاجية للابار خلال تغير الظروف التشغيلية و المكمنية سيتم توضيحها بالاعتماد على برنامج تحليل عقدي.

2- Introduction:

There are two parameters controlling the well performance which are inflow performance relationship (IPR) and Vertical Lift Performance (VLP). IPR is known as the relationship between well flowing bottom-hole pressure (Pwf) and production rate so it represent the flow from reservoir to inside wellbore.

There are many correlations and methods can be used to describe the reservoir performance. Each correlation has its own conditions to be applied according to reservoir and flow type. The most important methods which could be used for black oil reservoir are Vogle, Darcy and Fetkovich. In this work, the productivity index (PI) is already calculated from PLT data of well NS-5, therefore it can be used directly in nodal analysis.

The VLP depends on many parameters such as fluid PVT properties, tubing inside diameter, surface pressure, well depth, water cut and gas oil ratio. The total pressure loss from well bottom to surface is the magnitude of the three terms, gravity, friction and

acceleration. In oil well completion design, the gravity component should be comprised around 75% of the total pressure gradient [1].

Electrical Submersible Pump (ESP) components are key parameters in ESP design and any change in one or more of it will affect overall ESP performance. ESP components are; motor which is the system prime mover and electric motor with different type and size of ESP motors that give a different amount horsepower required. Gas separator, the presence of free gas in produced fluid decreases the ESP efficiency, so that a gas separator is used to remove the gas from produced fluid to the annulus. Pump, used to lift the fluid from down hole. To improve ESP capacity several pump stages could be used. Power Cable: used to supply the electric power to the motor down hole [2].

The objectives of well modeling & analysis are as follows [3]:

1. To calculate the optimum flow rate at which the well will flow with a known wellbore conditions and completion.

2. To evaluate the well and when it might be ceased to produce. This could be due to time when the reservoir pressure depletes.

3. To determine the best economical time to install artificial lift and helping in chosen the suitable artificial lift plan according to well conditions.

4. To evaluate well conditions and completion system in order to planning for the best and economically method which improving flow rate.

5. To evaluate each part in the well completion to determine if there is any restriction to flow unnecessarily.

3- Well Modeling and Optimization Sensitivities (Natural Flow) for well (NS-5):

3.1- IPR Generation:

The inflow performance relationship is modeled based on production log data for this well. The PLT data for well NS-5 are listed in Table (1) [4].

Journal of Petroleum Research & Studies (JPRS)

Well name	NS-5
Reservoir pressure psi	3365.9
Reservoir temperature °F	163.11
Productivity index STB/Day.psi	7.4
Well head pressure psi	975
Well head temperature °F	124
Flow rate STB/Day	2697.43
Gauge depth m	2011.5
Gauge pressure psi	3001.4
Gauge temperature °F	163.82

Table (1) PLT data of well NS-5

the IPR results are generated using PLT as shown in Figure (1).

Fig. (1) Inflow Performance Relationship for well NS-5

3.2- Matching Pressure Gradient:

The actual measured data of PLT test is used to obtain the best fit vertical flow correlation which described the test rate, well head pressure, well head temperature and flowing bottom hole pressure. As shown in Figure (2), Hegedorn and Brown correlation

line was the closest one to the measured point from all used correlations, so that may use after making this correlation fully matches with measured point.

In spite of being Hegedron & Brown correlation didn't distinguish between flow regime, but it gives the nearest calculated results to the measured results also the liquid hold up starts to decrease at a value very close to bubble point which indicate gas liberation and changing in flow regime from one phase liquid to two phase bubble, so it will be used to describe the well lifting performance.

Hagedron & Brown correlation is considered as most widely applied of oil wells as VLP correlation. It works well for bubble flow regime and slug flow regime in many applications. It could be used in wells for slug flow at moderate to high production rates also it use pipe roughness to describe two phase friction factor [5].

Ansari et al (1994a & 1994b) prepared eight different two-phase flow correlations and its relative errors, the smaller the relative performance factor, the more accurate correlation. According to Ansari's result, Hegdorn and Brown was found best correlation for current case [6].

Fig. (2) Matching VLP Correlations with PLT

To fully match Hagedorn & Brown correlation with the test point, it should be multiply be parameter 1 & 2 which will be define later. Table (2) shows that Hagedorn & Brown

correlation had the minimum standard deviation value after multiplying by parameter 1 & 2 which is zero while other correlation still have some deviation values.

Parameter 1: is the multiplier for the gravity term in the pressure drop correlation. Parameter 2: is the multiplier for the friction term.

Correlation	Parameter 1 value	Parameter 2 value	Standard Deviation
Duns & Ros	0.94657	0.35876	0.00024414
Modified			
Hagedorn Brown	0.96438	0.57842	0
Petroleum Experts	0.95892	0.54137	0.00048828
Petroleum Experts 2	0.95768	0.53745	0.00024414

Table (2) Correlations fitting Parameters & Standard Deviation

3.3- Matching VLP/IPR with Measured Data:

Match VLP correlation and IPR with test point to obtain the difference in liquid rate and bottom hole pressure for measured and calculated data as shown in the Figure (3) below:

3.4- Well design sensitivity:

The most important part of building a well physical model is to evaluate well performance under different reservoir and operation conditions such as: decline in reservoir pressure, increase in water cut, changing in well head pressure according to De-Gas Station circumstances and changing in production tubing size due to design requirements.

The production sensitivities will be applied to the designed well to determine well state under different situations. Liquid flow rate and bottom hole pressure will be calculated as they are the main production parameters.

Table (3) and Figure (4) show the effect of reservoir pressure decline and water cut increase on production rate (Assumed WHP= 975 psi which is the same wellhead pressure as PLT data).

	Pr= 3365.9 psi		Pr= 3250 psi			Pr= 3150 psi		
WC	Liquid Rate STB/D	BHP	Liquid	Rate	BHP psi	Liquid Rate STB/D	BHP psi	
		psi	STB/D					
0	2633	3010	2009		2978.5	1394	2961.6	
10	2151	3075	1454		3053	NO Flow		
20	1589	3151	NO Flow			NO Flow		
30	852	3250	NO Flow			NO Flow		
40	NO Flow		NO Flow			NO Flow		
50	NO Flow		NO Flow			NO Flow		
60	NO Flow		NO Flow			NO Flow		
	Pr= 3050 psi		Pr= 2950 psi					
WC	Liquid Rate STB/D	FBHP	Liquid	Rate	FBHP			
		psi	STB/D		psi			
0	NO Flow		NO Flow					
10	NO Flow		NO Flow					
20	NO Flow		NO Flow					
30	NO Flow		NO Flow					
40	NO Flow		NO Flow					
50	NO Flow		NO Flow					
60	NO Flow		NO Flow					
	Pr= 2850 psi		Pr= 2750 psi					
WC	Liquid Rate STB/D	FBHP	Liquid	Rate	FBHP			
		psi	STB/D		psi			
0	NO Flow		NO Flow					
10	NO Flow		NO Flow					
20	NO Flow		NO Flow					
30	NO Flow		NO Flow					
40	NO Flow		NO Flow					
50	NO Flow		NO Flow					
60	NO Flow		NO Flow					

Table (3) Well production results as reservoir pressure decreasing and WC

increasing.

Fig. (4) VLP/IPR relationship for different Pr & WC

From Table (3) and Figure (4), it is clear that the liquid rate is decreasing when the reservoir pressure decline as the pressure drop between reservoir pressure and Pwf decreased. For example, the well was producing about 3633 STB/Day when reservoir pressure is 3366 psi (Δp =365 psi), then when the reservoir pressure decreased to 3150 psi (Δp =189 psi) the well was produce 1394 STB/Day. At the end, the well ceased if reservoir pressure decreasing less than 3050 psi. All above results for WHP=975 psi and zero water cut.

As shown in Table (3) and Figure (4) that the increasing in water cut can cause the reduction in the production rate. When reservoir pressure and WHP are 3366 psi and 975 psi respectively, the well produced 2633 STB/Day and 1589 STB/Day for WC equal to 0% and 20% respectively. The well was ceased when water cut equal and more than 40%.

Table (4) and Figure (5) show the effect of changing the WHP and TBG size on the production rate at Reservoir pressure= 3365.9 psi and WC= 0%.

	WHP= 300			WHP= 600			WHP= 975		
TBG ID in	Liquid STB/D	Rate	FBHP psi	Liquid STB/D	Rate	FBHP psi	Liquid STB/D	Rate	FBHP psi
2.44	6226		2524	4851		2710	2633		3010
2.99	8383		2233	6279		2517	3015		2958
3.83	10713		1899	7499		2352	3204		2932

As shown in Table (4) and Figure (5), the production rate decreased when wellhead pressure increases and this is due to more WHP, leading to more Pwf and less pressure drop cross the reservoir causes low production rate. The well produced 2633 STB/Day when WHP equal to 975 psi then the production rate increased to 6226 STB/Day when WHP decreased to 300 psi for same tubing size (ID=2.44 inch).

From Table (4) and Figure (5), the production rate increased when tubing inside diameter increase, and this is due to reduction in fraction term lead to less pressure loss. For 2.44

inch ID, the well produce d 2633 STB/Day, while the production rate increase to 3204 STB/Day when tubing ID increase to 3.83 inch for same wellhead pressure.

4- ESP Well Design and performance sensitivity:

The electrical submersible pump is consider as one of the most important artificial lift method used in the oil industry because it required very little surface space, can be installed in vertical or highly deviated well either onshore or offshore. Also, it can be used in casing size (4.5 inch) and larger. ESP can be used in wells up to +13,000 ft in depth and it can handle fluid rate reach to 60,000 BPD depending on its size, design and operation conditions. If the ESP not operated at recommended operation parameters, the ESP efficiency will decrease and it may get failure [7]. Figure (6) shows the common ESP components.

Fig. (6) Schematic plot of ESP component [8].

4.3- ESP Design Parameters:

The main parameters were used in ESP design are:

- 1- **Pump depth:** this depth is the depth at which the pump of ESP set and it is represent the depth of intake pressure. Pump depth should be above the perforation interval and far enough from ESP erosion factors such as sand production and also should be below the depth at which the bubble point pressure is reached.
- 2- Design rate: is the rate need to be attained when installing ESP. In this study, the minimum rate of natural flowing well was 2600 BPD @ 2.875" TBG size, 0% WC, 975 psi WHP and 3365 psi reservoir pressure while The maximum rate was 10700 BPD @ 4.5" TBG size, 0% WC, 300 psi WHP and 3365 psi reservoir pressure as presented in Table (4). So that the design rate will be consider as the midpoint between minimum and maximum rate which is about 6000 BPD.
- **3- Gas separator:** if free gas enters the pump, ESP efficiency can be decreased because gas separator is needed to take the free gas out from ESP pump and direct it to the annulus. The decision of putting gas separator depending on Dunbar plot which is a relationship between the intake pressure, gas liquid ratio and the intercept with gas separator efficiency curves. If the test point above the red line, then no need for gas separator as shown in Figure (7).

Fig. (7) Gas Separator Sensitivity Plot

Parameter Value WHP psi 975 **Reservoir pressure psi** 3365 Reservoir Temp. °C 72.838 GOR scf/stb 537 WC % 0 **Design rate BPD** 6000 1902 Pump depth m **Design frequency Hz** 60

Т

The final ESF	design parameters	chosen to design	the ESP are	listed in '	Table (5)
---------------	-------------------	------------------	-------------	-------------	-----------

Table (5) ESP design pa	rameters
-------------------------	----------

ESP design Data/Result which is suitable and fit to operation requirements are shown in the following Table (6):

Pump Intake Pressure	2443 psig
Pump Intake Rate	7926 bbl/day
Pump Discharge Pressure	3254.5 psig
Pump Discharge Rate	7843 bbl/day
Selected Pump	Centrilift GC8200 5.13 inches
Selected Motor	Centrilift 450 175HP, 2285V, 50A
Selected Cable	Copper 0.26Volts/1000ft 115amp Max
Number of Stages	82
Power Required	153.4 HP
Pump Efficiency	71.5 %
Motor Efficiency	82.5 %
Current Used	46.8 amps

Table (6) ESP Design Result

The efficiency of designed ESP for different operation conditions according to design parameters very close to the best efficiency line and this improve the suitability of designed ESP for studied well as shown in Figure (8).

Figure (8) ESP Efficiency at different operation conditions

4.4- ESP Well Performance Evaluation Under different Operation Conditions:

Same as natural flow well; the reservoir and operation conditions have great impact on well productivity. Consequently, the designed ESP tested under different conditions such as decline in reservoir pressure, increase in water cut, changing in well head pressure, change in tubing size, change ESP operating frequency and stages number of ESP pump.

Table (7) and Figure (9) show the effect of changing in well head pressure and tubing size on well production rate (Reservoir pressure= 3365 psi and 0 % water cut).

	WHP= 300 psi		WHP= 600 psi		WHP= 975 psi	
TBG ID	Liquid Rate	FBHP	Liquid Rate	FBHP	Liquid Rate	FBHP
in	STB/D	psi	STB/D	psi	STB/D	psi
2.44	7770	2315	7099	2406	5978	2557
2.99	8988	2150	8186	2259	6978	2422
3.83	10714	1898	8806	2175	7461	2357

Table (7) ESP production results at different WHP and TBG size

Fig. (9) Shows VLP/Discharge pressure relationship for different WHP and TBG size.

As shown in Table (7) and Figure (9), that the production rate increase when wellhead pressure decrease for the same reason effecting on natural well previously. The only different between natural flow and ESP well, is that the using of ESP increased the flow rate. For natural flow well, flow rate is 2633 STB/Day while ESP well produced 5978 STB/Day under same conditions (WHP=975 psi, TBG ID=2.44 inch). For the ESP only, the well produced 7770 STB/Day with 300psi WHP, then produced 5978 STB/Day with 975 psi WHP.

As presented in Table (7) and Figure (9), the increasing on tubing size will increase flow rate. The ESP well produced 5978 STB/Day with 2.44 inch ID, then produced 7461 STB/Day with 3.83 inch ID while natural flow well produced 2633 STB/Day with 2.44 inch ID under same operation conditions (WHP=975).

Table (8) show and Figure (10) show the effect of frequency and number of stages on production rate (Reservoir pressure= 3365 psi, 975 psi WHP and 0 % water cut).

	Frequency $Hz = 40$		Frequency $Hz = 50$		
No. of Stages	Liquid Rate STB/D	FBHP psi	Liquid Rate STB/D	FBHP psi	
80	4183	2800	5022	2687	
100	4456	2763	5431	2631	
120	4690	2731	5736	2590	

Table (8) Production result for different Hz and No. of stage

	Frequency $Hz = 60$		Frequency Hz = 70		
No. of Stages	Liquid Rate STB/D	FBHP psi	Liquid Rate STB/D	FBHP psi	
80	5949	2561	6956	2425	
100	6508	2486	7617	2336	
120	6868	2437	8087	2272	

Fig. (10) Shows the VLP/Discharge pressure relationship for different number of stages and operating frequency.

As shown in Table (8) and Figure (10), for the same number of stages, the ESP well production rate increase when frequency increase as the pump will rotate more with high frequency. For example, the well produced 4183 STB/Day with 40 Hz then flow rate increased to 6956 STB/Day with 70 Hz (number of stages equal to 80 stages).

As presented in Table (8) and Figure (10), for the same frequency, the ESP well produces more fluid when number of stages increased. For the same frequency equal to 40 Hz, the well produced 4183 STB/Day with 80 stages then production rate increased to 4690 STB/Day with 120 stages.

Table (9) and Figure (11) show the effect of reducing the reservoir pressure (Pr) and increasing the water cut (WC) to well production rate (975 psi WHP and 60 Hz).

	Pr=3365.9 psi			Pr=3250 psi			Pr=3150 psi	
WC	Liquid I	Rate STB/D	BHP	Liquid	Rate STB/D	BHP	Liquid Rate STB/D	BHP psi
%			psi			psi		
0	5978		2557	5636		2488	5283	2436
10	5879		2571	5508		2505	5135	2456
20	5748		2589	5338		2528	4959	2479
30	5584		2611	5140		2555	4756	2507
40	5370		2640	4924		2584	4547	2535
50	5140		2671	4692		2615	4337	2563
60	4896		2704	4472		2645	4128	2592
		Pr=3050 psi				Pr=295	0 psi	- -
WC %	<i>′</i> 0	Liquid Rate ST	TB/D		FBHP psi	Liquid	Rate STB/D	FBHP psi
0		4919			2385	4553		2334
10		4762			2406	4389		2356
20		4582		2430		4210		2381
30		4386		2457		4020		2406
40		4187		2484 3		3827		2432
50		3984			2511	3645		2457
60		3782			2538	3477	3477	
		Pr=2850 psi				Pr=275	0 psi	
WC %	<i>′</i> 0	Liquid Rate ST	TB/D		FBHP psi	Liquid	Rate STB/D	FBHP psi
0		4179			2285	3805		2235
10		4015			2307	3653		2256
20	20 3837			2331	3501		2276	
30	30 3664			2354	3348		2297	
40	40 3504			2376	3194		2318	
50		3341			2398	3037		2339
60		3178			2420	2879		2360

Table (9) production results for different reservoir pressure and water cut

Fig. (11) Shows VLP/Discharge pressure relationship for different Pr and WC.

From Table (9) and Figure (11), the production rate increases when reservoir pressure increase and water cut decreases. For example, the ESP well produced 3805 STB/Day (Pr= 2750 psi &WC=0%) then production rate increased to 5978 STB/Day (Pr=3366 psi & WC=0%) while the natural flow well was ceased when reservoir pressure equal to 2750 psi under same operation condition (WHP=975 psi). For different water cut, the ESP well produced 5978 STB/Day with zero water cut then production rate decreased to 4896 STB/Day with 60% water cut, while the natural flow well was ceased when water cut equal to 60% under same operation conditions.

Conclusions:

- 1- The production rate increases when tubing size increases and/or wellhead pressure decreases for both of natural flow well and ESP well.
- 2- For ESP well, the production rate increases when ESP frequency increases and/or number of stages increases.
- 3- As the production conditions are changing during reservoir life, thus it is very important to re-design the well from time to time according to new situations.
- 4- ESPs are very useful to increase well productivity when the well is not able to produce under natural flow condition or the production rate is low.
- 5- Some well ceased while production under natural flow, but it could be putted again in production by using ESP.
- 6- As ESP design is restricted to initial well completion (casing size and down hole restrictions), the reservoir management team should take this into account for future reservoir development plans.

Symbol	Definition	Symbol	Definition
IPR	Inflow performance relationship	AOF	Absolute Open Flow
VLP	Vertical Lift Performance	DGS	De-Gas Station
Pwf	Flowing Bottomhole Pressure	WHP	Well Head Pressure
P.I	Productivity Index	WC	Water Cut
PLT	Production Log Tool	Pr	Reservoir Pressure
PVT	Pressure-Volume-Temperature	TBG	Tubing
GOR	Gas Oil Ratio	ESP	Electrical Submersible
			Pump

References:

- 1. IPM Petroleum Experts "PROSPER user manual", Version 11.5, January 2010.
- E. d. S. Batista, "Development of a Tool Computational Method for Application in the Submersible Centrifugal Pump Lifting", Universidade Federal do Rio Grande do Norte, 2009.
- 3. Lea, J.F. "Production Optimization Using a Computerized Well Model", Amoco Production Co. and Brown, K.E., U. of Tulsa, 1986.
- Mohammed Saeed "Production Optimization of Mishrif Formation in Nasiriyah Oil Field by Using Gas Lift and ESP Techniques", UO Technology Master Degree thesis, 2018.
- 5. Bryan T. Cacho, "A Study on Different Two Phase Flow Correlations Used in Geothermal Wellbore Modelling", United Nation University, Nov. 8, Reports 2015.
- Economides, M.J.; Hill, A.D.; Economides, C.E.; Zhu, D., "Petroleum Production Systems (2 ed.)", Westford Massachusetts Prentice Hal, 2013.
- 7. O.J. Romero, "Subsea Electrical Submersible Pump Significance in Petroleum Offshore Production", Universidade Federal do Espírito Santo, March 2013.
- 8. Cholet, H., "Well Production Practical Handbook", Editions Technip, Paris, 2008.