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Abstract: 

Degassing station breakdowns can be dangerous to the operator health and the environment. 

Programmable logic controllers (PLCs) are key modules of manufacturing control systems 

that are applied in the complex oil and gas units to reduce manpower and unnecessary faults. 

However, feeding a PLC with data is a difficult part due to the need of system log files which 

records all events that occur in the oil fields and provide visibility to a given environment. 

Moreover, most critical chemical processing plants and oil distributions are visualized and 

inspected by Supervisory Control and Data Acquisition Systems (SCADA). These systems 

have been focused on safety, and there are issues that they could be the target of worldwide 

terrorists. Along with the frequently rising internet-related attacks, there is indication that our 

degassing stations may similarly be susceptible; for that reason, it is essential to secure PLC 

and SCADA from undesired incidents. Recently, machine learning (ML) has been increasing 

interest in industrial systems to detect, identify, and store information. Therefore, we propose 

to apply an advance ML based on deep neural networks to the PLC system with the purpose 

of: 1) detecting anomalous or irregular PLC actions; 2) Optimizing the operation of systems 

and its facilities; 3) allowing the equipment to respond to changing and novel scenarios; 4) 
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Making predictive maintenance possible. The SIMATIC S7-1214 CPU universal TIA 

platform was used as the main decision-making module. Experimental results demonstrate 

the effectiveness and utility of the proposed approach to process large amounts of data 

analytics and sensor measurements, allows it to spot potential problems and provide possible 

solutions. 

Keywords: Machine learning, Neural network, PLC, SCADA, Control system. 

 

1. Introduction 
The industry generally utilizes automatic machine and automated operations for separate 

the item of production and continuous method. Machines were in the starting mechanically 

controlled, after that, they were electromechanically controlled (such as a relay or contactor), 

and nowadays they are controlled by electrical or electronic within computers or control 

systems. A control system is a series of actions, preserve several variables constant, or track a 

number of specified changes [1]. The main function of the controller is to preserve the 

performance of the field on the required value. For example, the conveyor belt used to 

control the quantity of objects and forward them into a packing case. The control inputs may 

derive from switches being shut or unlocked; for example, some sensors used to measure the 

temperature of flow rates. The controller device might be needed to handle an engine to shift 

a target at a particular position or to turn a valve on or off. Originally, the rules leading the 

control system are defined by the wiring. When these rules are changed, the wiring has to be 

changed that is a time-consuming [2]. 

Choice of the controller and parameters detection are essential tasks in typical control 

approaches [3]. Controller parameters that are obtained cannot permanently offer the stability 

of a system to the preferred extent because of issues; for instance, modeling mistakes of 

system, disruptive effects, and variations in the controlled parameters. The majority of the 

systems behavior employed in the industry currently are nonlinear time-delay. These 

schemes have too much overshoot, abnormal settling times, and are not stable. Basically, it is 

very hard to model a controller using simple approaches. However, it can be modeled by 

using different schemes if mathematical functions of the controller can epitomize the system 
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behavior thoroughly [4][5]. Nevertheless, it is quite challenging to have a practical 

mathematical model. 

To overcome this problem, we need a high-performance control system to accept field 

wiring to be ended on input/output (I/O) terminals and to be re-programmed by workers and 

each time the machine process is changed, no wiring changes are required. A Programmable 

Logic Controller (PLC) is a computer-type device for applying certain functions (for instance 

arithmetic, timing, or sequencing) to control over digital or analog terminals different kinds 

of processes [6][7]. Initially, the PLC was used to replace relay logic, but it is found now in 

more complex applications that require high-reliability operations, particularly in oil and gas 

systems.  The PLC is intended for numerous data sources and yield sequences of action, 

immunity to electrical noise, and resistance to vibration [8]. The high number of these I/O 

terminals of the PLC will enable this single system to control a large number of pumps or 

motors and any failure can also be monitored [9] [10]. 

Since processes are becoming more complex [11], and the functionality of machines are 

growing, the operator needs a powerful tool to control and monitor production systems. A 

Human Machine Interface (HMI) system represents the interface between the human being 

(operator) and the process (machine) [12]. It lets the operators to quickly understand current 

operating conditions to successfully monitor and control such a process. Besides, HMI can 

receive views from other applications and have graphing and trending capabilities. Recently, 

PLCs have shown their ability to achieve significant improvements in real time processes 

[13] [14], ranging from basic process control to complicated maintenance and data 

management applications. In [6], a new control module based on a PLC and fuzzy 

approaches has been proposed for hybrid wind power generation system to enhance its full-

load power factor. Moreover, a production line controlled by a solenoid valve based on PLC 

is shown in [15] [16]. 

Despite all of these standard control techniques, Artificial Neural Networks (ANN) began 

to be applied in the area of control as they have the proficiency to train, generalize, and to 

form arithmetic expressions [17] [18]. In the sense of biological analogy, a neural network 

tries to follow the human brain’s skill to learn from data, and simplify models. Neural 

networks have been designed to solve non-linear complex applications [19]. Engineering 
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control frameworks, which are usually utilized in the crucial infrastructure, add safety and 

suitability in modern society. These frameworks have provided consistently for long times; 

however, a varying technological conditions is subjecting them to hazards that they were not 

planned to manage [20]. Especially, their confidence in networking technologies, supporting 

remote access and control over the connectivity of Internet, extensively rise the possibility of 

threats. A typical method while examining attacks connecting an industrial control system is 

to focus on the central server or SCADA system [21]. These servers normally employ 

operating systems, allowing the use of standard scientific instruments. But, the field of 

physical devices, for example remote terminal units (RTUs) usually depend on protective 

embedded hardware systems, and consequently, need arithmetical scientific methods [22]. 

Inappropriately, these methods are very inadequate in their functionality. Besides, PLCs 

which cooperate with sensors and actuators, are significant elements of industrial systems. 

Moreover, the current interconnectivity of PLCs and SCADA systems with shared networks 

and Internet has notably enhanced the threats to critical infrastructure [23]. Accordingly, they 

are appealing objects for attackers. An important example is the Stuxnet malware that 

affected PLC Siemens worked in Iran’s uranium hexafluoride centrifuges [24]. The malware 

reprogrammed the PLC data to produce failures and destruction while delivering faked data 

to the operators to hide the attacks [25]. Unlike conventional digital forensics, no classic 

rules, techniques, and devices are accessible for making PLC forensics. A crucial test is the 

require of system logs for forensic investigations.  

In this paper, we propose a novel model, which allows modelling of more complex oil 

and gas processes. We apply machine learning approaches to the logged data to detect 

strange or anomalous PLCs processes and internet network. The proposed system is applied 

to the modern Siemens SIMATIC S7-1214 CPU. The main goal of this work is to design a 

controller proficient of preparing the best possible decision for a Rumaila degassing stations. 

It is likewise feasible to observed breakdown of sensors, actuators, and failures in 

measurement; hence avoiding the field from being cooperated. 

The rest of this paper is organized as follows: Section 2 explains the novel methods we 

used based machine learning. Then, proposed philosophy and experimental conditions are 

showed in Section 3. Evaluation and discussion are presented in Section 4. Finally, Section 5 

concludes the contributions of this paper. 
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2. Proposed methodology: 
2.1. Machine learning based neural networks 

The main task of any control system is to automatically adjust the output and preserve it 

at the preferred value. If the input is altered, the output must react and adjust to the new set 

value. If something occurs to interrupt the output without an adjustment to the input, the 

output must go back to the correct value. To control this output, the error between output and 

input must be computed. This paper proposes a new approach for controlling industrial 

processes by using a neural network. It aims to build a new control system help to reduce the 

error between desired and actual signals, while it reacts speedily with any change in the input 

and dealing with the disturbance in the system. Artificial Neural network (ANN) has the 

ability to supervise, handle any data, make a combination between neural network and PLC. 

ANN learn the industrial process and test it every time when PLC program is running, and 

can work as a controller for some tasks inside the process. ANN may separate between PLC 

and the process and run the process by its learning knowledge when necessary [26].  

The algorithm is applied in a PLC for real-time operation. The system execution is 

evaluated with each one of the input training and test sets. This system is a multi-layer 

recurrent neural network (RNN), which consist of an input, hidden, and output layers. The 

hidden layer takes nonlinear sigmoid function, whereas the output layer takes linear function. 

The suggested recurrent model is operating fully connected nodes with feedback path from 

the hidden layer to the input layer. Figure (1) shows a schematic diagram of our designed 

model. 
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Fig. (1) Block diagram of the proposed system. 

Bidirectional long short-term memory (biLSTM) is investigated in this study as a main 

topology for the RNN. The principal idea of the biLSTM was firstly proposed in [27]. For a 

given input vector sequence , a regular RNN based biLSTM calculates 

hidden state vector sequence  and outputs vector sequence . 

More specifically, biLSTM splits the state neurons in a forward state sequence , and 

backward state sequence ; which indicates that the output of the forward and backward 

states are not connected. This can be viewed in Figure (2). Alternatively, the process of the 

biLSTM can be expressed here as: 

 

 

 

where  is the weights matrix between two layers,  is the bias vectors, and  represents 

an activation function expressed as [28]: 
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Fig. (2) Recurrent neural network architecture. 

RNN based biLSTM intends to minimize the mean squared error  among the target  

and the prediction outputs  

 

The objective of this paradigm is to ensnare the connection between historical input states 

and corresponding output states. This is accomplished by recurrently awarding samples of 

the input-output connection to the model and modifying the weights in order to reduce the 

error between the previous outputs and the one predicted by the model. In our study, we 

propose a neural network which is trained using the back propagation algorithm. This means 

that the trained network is used to predict PLC input/output values and its configuration.  

Data is based on actual-normal parameters such as pressure, flow rate, chemical 

reactions, and temperature. A machine learning method naturally separates the existing 

database into two modules: a) training set for learning the properties of the data, and b) 

testing set for assessing the learned properties of the data. Therefore, if there is any deviation 

of the variable under control away from its normal value, control action based PLC should be 

taken automatically to resolve it. 
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2.2. PLC system decision 

The PLC used here is based on the SIMATIC S7-1214 CPU universal Totally Integrated 

Automation (TIA) platform. The SIMATIC S7-1214 combines minimum cost, maximum 

quality, and functionality in a wide variety of automation applications as it can be used for 

controlling open-loop and closed loop tasks [10]. The SIMATIC S7-1214 is supplied with 

various connection tools (with HMI or other SIMATIC controllers) like integral PROFINET 

interface or through point-to-point interconnections modules. 

The main CPU compact used in our project is based on DC/DC/relay. It has fourteen 

digital inputs, ten digital outputs, and inside two analog inputs flexible with three 

communication modules, eight signal modules, and one signal board. It is good to note here 

that Boolean execution time is 0.1 μs per operation with load memory 2 Mbyte. The Function 

Block Diagram (FBD) was implemented in Siemens SIMATIC step 7 version 10.5, which 

allows calibrating of all S7-1200 controllers and the associated I/O channels. Figure (3) 

depicts the loaded program into the memory of the PLC.   

4 milliamps to 20 analog signals is applied to compute the flow rate, pressure, and level 

across the PLC. A PLC creates anomalous processes during hardware breakdown, 

mismatched firmware version, program bugs produced by the attacker, and memory read and 

writes violence [29]. With the purpose of discover these types of anomalous actions, we 

perform the followings. We primarily take applicable values of memory addresses operated 

by PLC system in normal conditions.  Then, the secured values are applied to train a model 

for the desired performance of the PLC using RNN based machine learning. After that the 

trained model can be used to verify whether the PLC events are in regular process or 

anomalous. 
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Fig. (3) PLC module. (a) CPU 1214C DC/DC/RLY; (b) Totally Integrated Automation 

Portal view. 

2.3. HMI monitoring system 

The Human Machine Interfaces (HMI) is driven in this paper by SIMATIC KTP600 

Basic color 5.7 inches, TFT-LCD (thin-film-transistor liquid-crystal display) offering 256 

colors, one Ethernet interface (TCP/IP) or one RS 485/422 interface, and touch screen with 

six physical function keys. It is a straightforward and accessible illustration of process values 

[12]. The KTP600 gives HMI main functionality (alarms, trend curves, recipes) with 500 

tags. 

HMI structure in this work is executed with the industrial software SIMATIC WinCC, 

which is an element of STEP 7 v10.5. WinCC is the software for process visualization we 

use to handle all necessary configuring tasks. If a critical event happens in the process, an 

alarm is activated automatically; for instance, if a predefined limit is exceeded the trip point. 

Figure (4) shows the loaded program into the memory of the HMI. 

Machine learning on any system makes an ability to record the measured data from the 

inputs and execute complex computation for modeling purposes. HMI allows a single 

operator to detect and control other complicated process. In this work, the HMI has been 

upgraded and trained with event logging adequacy and visualization of the process flow, as 

shown in Figure (4). This logging adequacy will be used for RNN creation. Thus, HMI can 

accept a single operator to monitor thousands of controls systems. 
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Fig. (4) HMI module. (a) SIMATIC KTP600 Basic color 5.7"; (b) SIMATIC WinCC 

based TIA portal. 

3. Experimental settings:  

Since the concept of deep learning is defined as a sequence of layers, we will make a 

sequential model and add layers one at a time until we are satiated with our network 

topology. In our paper, the number of inputs will be the same number of instruments in the 

field, in addition to the last input, which indicates if the packet is normal or malicious. 

The circuit created with a PLC function block diagram (FBD) as a software programming 

is designed to provide a switching selection for running; for example, some mechanical 

pumps as shown in Figure (4). An HMI configuration is designed as per the condition of the 

FBD software package, and so that would be visibly recognized by the operator who is sitting 

in the control room to administer and manage any actions remotely. In SCADA/HMI, 

visualization tool is prepared to model the process that will be comprehensible and practical 

to understand the ongoing activity by monitoring in the screen. With the development in 

technology of touch screen, the input data can be fed through the PLC, and also if there any 

modifications in the data can similarly be revised online. Correspondingly, it will be 

specified and showed in the HMI. The experiment was executed on an NVidia Titan X GPU. 

The total time for learning (Training + Testing) was 2 hours.  
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Once the proposed system has been trained, it can be expended to make controls and 

estimates. We can do predictions on test or validation data to approximate the system 

behavior. The RNN topology and the final group of weights are all that we require to keep 

from the network system. Predictions are created by delivering the input to the system and 

making a sequence-to-sequence letting it produce an output that we can utilize as a 

prediction. Neural network training settings are shown in Figure (5). 

 

Fig. (5) Neural network training settings. 

4. Results and discussion: 
When the model is prepared, we can approximate the performance of the model on the 

train and test datasets. Then, we can generate predictions to get a visual indication of the 

ability of this model through processing samples. Once the training finish, we can accept the 

generated data as a reference model output compared to the reference model input, as seen in 

Figure (6). Here, we examine the effect of the number of sampled data on the performance of 

our method. As expected, it shows that the constructed proposed model has excellent 

predictability when the simulation concluded. Therefore, the training data is acceptable. 

To measure the PLC accuracy based on new acceptable trained data, four different 

connectivity metrics were used to discover modeling errors, and to better understand a 
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system's behavior through the measurement. Mean square error (MSE), regression, 

validation, and error histogram are all confirmed that our system is fitting both the training 

and the test datasets. This can be noticed from Figure (7), where we visualize the accuracy of 

the proposed PLC based machine learning model using a series of training epochs. It is 

clearly considered that the condition with the best training performance is MSE = 2.5419e-09 

at epoch 30. Furthermore, the best validation performance yielded from the training biLSTM 

algorithm with Gradient = 7.73e-05 at epoch 30. Besides, the error histogram shows all error 

fall between -0.00014 and 0.000175. It can be clearly observed that there are no outliers (that 

can make a fatal impact on the training model) in our data set; this means that no failure has 

been detected in the PLC system. Finally, the regression plot shows our system ability to 

estimate the model target; which ensures a very high percentage of accuracy. This means that 

our system is efficient, robust, and superior to model input data for Rumaila oil fields.   

Additionally, to test the PLC on malicious data, we equipped numerous anomalous 

packages with random IP addresses, ports, values, and injected the normal-real one with 

them. The real values used in this experiment are based on a reading of the temperature 

transmitter taken from the field (Table 1). The input device gives contacts either normally 

closed or normally open to the PLC. Then, the PLC activates the signal 24V DC. Figure 8 

shows the output from the PLC neural network for training, validation, and testing data sets. 

It can be seen that the output created from our proposed model is matched the optimal output 

of the plant with an accuracy of almost 0.99987, and neglect of all the fake data. Similarly, 

we test our model with real data; and the result was also very similar to reality as viewed in 

Figure (9).  

To sum up, the modeling technique performance is assessed with training and test sets. 

Useful result has been achieved in Figures (7-9), in which the proposed system guarantees its 

efficiency to work accurately. Most importantly, to test our proposed system on malicious 

packets, we trained some anomalous data with different IP addresses, ports, and values; and 

injected with PLC system. The machine learning model detects all normal data with a high 

accuracy of 99.9% (please see Figure 8). Hence, this yields that our PLC model based 

biLSTM neural network is beneficial in the Rumaila oil field.  
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Table (1) Measurement values based on a reading of the temperature transmitter. 

Integer value  
(analog value) 

Measured value 
(0-20mA) 

Measured value 
(4-20mA) 

Physical value 
Cº 

0 0 4 20 
5026.9 3.64 6.91 40 

10053.81 7.27 9.82 60 
15080.72 10.91 12.73 80 
17594.18 12.73 14.18 90 
20107.63 14.55 15.64 100 
22621.09 16.36 17.09 110 
25134.54 18.18 18.55 120 

27648 20 20 130 
 

 
Fig. (6) Output of the proposed model through processing samples.  

 

 

a) Processing sample at 1400 of 6000 b) Processing sample at 2400 of 6000

c) Processing sample at 2700 of 6000 d) Processing sample at 6000 of 6000
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5. Conclusions: 
The programmable logic controller is a manufacturing platform for developing systems 

and applying advanced control in real-time. This paper proposed a method for using machine 

learning based recurrent neural network in a PLC at Rumaila degassing stations. Our 

proposed neural network based biLSTM is a successful tool in implementing, modeling, and 

optimization a discrete event system controller. The proposed model confirms its 

effectiveness to perform correctly even in the case of some sensor faults. This technique 

might be extremely beneficial in decreasing the difficulty in PLC diagnosis as a consequence 

of the RNN model. The results have shown that the neuro-controller (PLC-RNN) model can 

be attractive for us. Thus, the system is made more secure, reliable; it cuts the production 

costs, increases the quality, and highly efficient by means of the proposed system. 

For future work, Authors plan to test this model for larger systems with numerous input 

transmitters including pressure, temperature, and vibration sensors.  

 

Fig. (7) Accuracy of the PLC based machine learning model.  

a) Training performance

c) Training regression d) Training histogram

b) Training validation
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Fig. (8) Plant and PLC neural network outputs based on input reference data for 

training, validation, and testing data sets.  

 
Fig. (9) Plant output performance based on training data.  

 

a) Training data b) Validation data

c) Testing data
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