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Abstract

Recently, solving the optimization-control problems by using artificial intelligence has widely
appeared in the petroleum fields in exploration and production. This paper presents the state-
of-the-art reinforcement-learning algorithm applying in the petroleum optimization-control
problems, which is called a direct heuristic dynamic programming (DHDP). DHDP has two
interactive artificial neural networks, which are the critic network (provider a
critique/evaluated signal) and the actor network (provider a control signal). This paper focuses
on a generic on-line learning control system in Markov decision process principles.
Furthermore, DHDP is a model-free learning design that does not require prior knowledge
about a dynamic model; therefore, DHDP can be appllied with any petroleum equipment or
devise directly without needed to drive a mathematical model. Moreover, DHDP learns by
itself (self-learning) without human intervention via repeating the interaction between an
equipment and environment/process. The equipment receives the states of the
environment/process via sensors, and the algorithm maximizes the reward by selecting the
correct optimal action (control signal). A quadruple tank system (QTS) is taken as a benchmark
test problem, that the nonlinear model responses close to the real model, for three reasons:
First, QTS is widely used in the most petroleum exploration/production fields (entire system or
parts), which consists of four tanks and two electrical-pumps with two pressure control valves.
Second, QTS is a difficult model to control, which has a limited zone of operating parameters
to be stable; therefore, if DHDP controls on QTS by itself, DHDP can control on other

equipment in a fast and optimal manner. Third, QTS is designed with a multi-input-multi-
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output (MIMO) model for analysis in the real-time nonlinear dynamic system; therefore, the
QTS model has a similar model with most MIMO devises in oil and gas field. The overall
learning control system performance is tested and compared with a proportional integral
derivative (PID) via MATLAB programming. DHDP provides enhanced performance
comparing with the PID approach with 99.2466% improvement.
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I. Introduction

Approximate dynamic programming (ADP) is useful tool to overcome a behavior of
nonlinear systems [1]. ADP has three categorizes [2]: heuristic dynamic programming
(HDP), dual heuristic programming (DHP) and globalized DHP. ADP has two neural
networks: actor and critic to provide optimal control signal and the long-cost value,
respectively. If the action-dependent (AD) form is used in ADP (ADHDP for HDP and
ADDHP for DHP). ADP is used in many real applications. For instance, [3] presents how
control on turbo-generator. [4] shows the ability of DHP to solve swarm robot problems. [5]
and [6] illustrated that ADHD P can obtain an optimal path by multi-robot navigation.
Recently, [7] and [8] are used with Atari game to solve many hard problem with huge
number of states. All previous ADP approaches are used temporal difference learning
algorithm based on Markov decision process. A Markov Decision Process contains a set of
model states, a set of actions, and a reward or cost function and system model. The core of
Markov decision process is to find a sequence of actions for certain state that make the cost
low or long-go reward high. The main purpose and aim of this paper is how using the HDP
approach to control on a process of a quadruple-tank system (QTS), which is frequently
used in oil and gas industrial. QTS consists of four interconnected tanks and two motor-
pumps [9]. HDP is used to control voltage of two pumps to follow the desired level (set
point level value) of tanks, which is a first approach appearing in the literature. This paper
presents a self-learning algorithm to build a controller from scratch without human

intervention to control on tanks level of QTS.

II. Devices and experiments

This section presents the aspects of HDP as in [2] and [6] with details of learning of the

nonlinear QTS model as in [9].

A. Architecture of The HDP approach

The main block diagram for the featured DHDP illustrates in Figure (1).
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Fig. (1) Block diagram for HDP. u_t is the action vector at time t to control on the motor-
pumps of QTS that comes from actor neural network (the controller), while the value
function ( J_t ), which is single long - cost value, comes from critic neural network. s_t is
the input states vector at time t, which is represented by the tank levels. A reinforcement
function (r_t) can get from linear quadratic equation. The backpropagation learning path
is shown by dashed lines for actor and critic networks.

As shown in Figure (1), the model produces a prediction of the next state and next reward.

HDP uses to solve the Bellman’s optimality equation, which is written as [6].
J(s,u) = Py (re +y &5 J*(s',0)) )

according to Markov decision process principles, the J*(s,u) is the optimal value function of
the current state s; PSL;, is the transition probability to move to the next state s’ with action, u,
that belong to <A, (in this paper, P.s = 1) and y is the discount factor, which is between 0 and
1. Therefore, The Bellman’s optimality equation obtains as follows:
J'(s,w) = yeq [r(s,w) +y )7 (s', w)] 2

The optimal control u*(s) is given as follows:
w(s) = T rsw +y Wl Q)

As shown in [6], DHDP consists of blocks called the action network and critic network. It
also uses online learning for the neural networks. The control signal is generated from actor
neural network (controller), which is evaluated by the critic neural network. Both critic and

actor have one hidden layer. The temporal difference error for the critic network is defined as:

Ot = Jeo1 — (e +¥Je). 4)
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And
Ef =262, (5)

The gradient-based adaptation for the weights update rule in the critic network can be given
by

Wiy = Wi + Awg, (6)

awg = 1 [~ 2] (7)
t t awgl’

26 _ (26 21 )

ows — Laj, awel ®)

Where, 7 is the learning rate of the critic network at time ¢, and (wy ) is the weight vector in

the critic network.

Fig. 2 illustrates the critic’s neural network structure. The weight updates from hidden to

output layer (Aw§?) according to backpropagation rules are:

Awf? = =5y Sp”, ©)

While, the weights updating from input to hidden layer (Aw{?) are:

Awet = —£50.5[1d(n.) — diag(p})]lys.we21" [In] (10)

where n, is the total number of hidden nodes in the critic network; p; = a(q j) is the j output
of the hidden nodes q,p € R"™¢; g(.) is the sigmoid function; In is the row vector for total

number of inputs to the critic network which consists of n input states concatenated with m

control signals; In € RO+™); 1d(.) is the identity matrix, diag(.) is a diagonal matrix.
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Fig. (2) Critic multilayer perceptron neural network structure (Sigmoid function is
applied only for hidden nodes) for hidden nodes.
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As shown in Figure (1), the error between the desired ultimate objected (U, = 0) to minimize
the actor error (see [2]) and the approximate value function (J;) is backpropagated through

critic network. The error function of an action network can be defined as

pe =Je — Ue. (1)

Therefore, the objective function in the action network is
a_12
Ef = S Ht- (12)

The weight updating in the action network is given as follows:

Wit = wi + Awg, (13)
a _ pa|_ OE{

awg =42 | awg], (14)

OB _ [9EE 9Jr Our

owg [ajt dur awg]‘ (15)

Where £¢ the learning rate of the action is network at time t, and w/* is the weight vector in the

action network.

Figure (3) illustrates the actor network. The weight updates from hidden to output layer

(Awf?) according to backpropagation rules are:
Awf? = =7 [w?1(0.5]1d(ne) — diag(p})])Weal (0.5[1d(m) — diag(wP)Dg", (16)
While, the weights updating from input to hidden layer (Aw&?) are:

Awit = =2 [we?](0.5[1d (ne) diag(p})]) [Wea] (0.5[1d(m)diag (uP)]) [w?] x

(O.S[Id(na) — diag(gjzv)]T) Se, (17)

where n, is the number of hidden neurons; u; is the jth output from action network; w,, is the
weight values which are associated with the input states from the action network, w,., €
R LA from wel; gj 1is the jth output of the hidden nodes of the action network,

g € R"*1 Both critic and action learning rate decrease with time until a certain small value

as we present in the result section.
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Fig. (3) Action multilayer perceptron neural network structure (sigmoid function is

applied for all nodes)

B. Architecture of The QTS approach

Figure (4) illustrates a schematic diagram of the QTS. Authors in [9] derived accurate
mathematical model based on both physical and experimental data. They demonstrates that the
outputs from the model and the outputs from the real process are closed in various situations.
Two pumps is used to control on the level in the lower two tanks by input voltages (v;and v,).
The voltage from level measurement devices are represented the output (y;and y,). Low of
Bernoulli and mass balances deferential equations are given as follows [9]:

dhq Y1k

a _Z_i 2gh1+j—j 2ghs + A v

%: —Z—z 2gh2+j—: 2gh4+yj1':2vz, (18)
%: —Z—z 2gh; +%Uz,

%: —j—z Zgh4+%v1,
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Tank 3

Y2

Fig. (4) Schematic diagram of the QTS [9].

Where, Table (1) presents the values and descriptions of parameters. Equation (18) converts to
multi-inputs multi-outputs (MIMO) nonlinear state space representation with two inputs
(pumps voltages) and two outputs (Tankl and Tank2 levels), which is demonstrated in
equation (19). In this paper, the system model of DHDP is represented by (19). The Runge-
Kutta 4.5 method is used to solve the differential equation of QTS model. MATLAB V2018b

is used to implement the entire structure of HDP.
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Table (1) The parameters for differential equation QTS model

State variables Value Description
A4 28 cm? Cross-section of Tankl
A, 32 cm? Cross-section of Tank2
Asg 28 cm? Cross-section of Tank3
Ay 32 cm? Cross-section of Tank4
aq 0.071 m? Cross-section of outlet hole of Tank1
a, 0.057 cm? Cross-section of outlet hole of Tank2
as 0.071 cm? Cross-section of outlet hole of Tank3
a, 0.057 cm? Cross-section of outlet hole of Tank4
hy | e cm Liquid level of Tank i
Y1 0.7 Constant of the three-way valvel
Vo 0.6 Constant of the three-way valve2
v, | - v Required voltage for pump1
v, | - A% Required voltage for pump2
kq 3.33 cm3/Vs Converter for input 1
k, 3.35 cm3/Vs Converter for input 2
g 981 cm/s? The acceleration of gravity
RN
0o 2 o 2| Jo vl
o I R P A
T, Az
[0 0 0 ;—1 | | “Z& 0

Where x =[h; h; hy R,y =[Y1 ¥2]7,u=[v1 V2]T and the time constant is

defined as follows:

T, = % /%l =1,2,3, and 4.
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I11. Plots and Discussion of Simulation Results

In this section, the comparison between the proportional integral derivative (PID) as in [10],

and our approach (DHDP). These PID gains are given in the PID transfer function:

1 N
ux(s) = Kp + Ki;-l' Kdm , (20)

s
Where K, is proportional gain, K; is integral gain, K; is derivative gain, and N is the first-order
derivative filter gain (for reducing noise and distortions). In this paper, we used two PID
controllers (one for pumpl and the other for pump2). The values for these gains are taken from
[10] with improvement by using try-and-error method, which are K, = 3, K; = 1.2, K; = 0.1,
and N = 108 for the PID of pumpl, the PID gains for pump2 are K,, = 2.7, K; = 1.2, K; =
0.0675, and N = 100. The basic HDP parameters are described as follows: the discount rate is
0.95; critic learning rate is 0.05 and the actor learning rate is 0.01; the training for either
network will be terminated if the error drops under le — 2 or if the number of iterations meets
the stopping threshold. The number of neurons in the hidden layer is 24 for critic network and
20 for actor network. Figure (5) shows the states of level tankl after using PID and HDP
during 1000 sec. Clearly, the HDP approach has better performance comparing with PID with
fast response and no overshoot. Moreover, the level state in tank 1 has better steady-state
complaining with PID as shown in zoom-in of Figure (5). Similarly, Figure (6) shows the states
of level tank2 after using PID and HDP during 1000 sec. whereas, the HDP approach has better
performance comparing with PID with fast response and small value of overshoot. Figure (7)
presents the summation of errors of two level states during time. Clearly, the HDP approaches
have small error comparing with PID controller. Figure (8) shows the average of level errors
over learning iterations (2000 times) with zoom-in for last iteration with 5 different runs. The
controller of HDP (actor network) is taken for last iteration, which is semi-optimal controller,

because of last error.

IV. Technical and Economic Feasibility

The mean-squared-error with the PID approach is 0.3849, while the mean-squared-error with
the HDP approach is 0.0029. That means, the improvement percentage is 99.2466%, which
yields a very efficiency of using electrical power. However, the HDP approach has better
results and more reliable to use, but HDP requires building two neural networks and high-

speed computer for training and leaning the critic and actor networks. Because of most
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equipment in our company has programmable logic control (PLC) devices, the neural network
block is already existed in the toolbox of PLC programing. Therefore, this project can apply in
real by installing PLC or (remote terminal unit — RTU) near to any equipment with HDP
toolbox connected to the sensors and actuators of certain equipment. At first time, the HDP
toolbox in PLC or RTU are learnt by itself to build suitable robust controller (actor network).
Then, the HDP controller is used during normal situations, while if any hard sadden events
happen to the equipment that change the internal model (the PID controller cannot handle it),

the HDP toolbox starts learning from scratch again to overcome the new situations.
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Fig. (5) The level of Tank 1 state coming from PID and HDP approaches with zoom-in.
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Fig. (6) The level of Tank 2 state coming from PID and HDP approaches with zoom-in.
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Fig. (7) The summation of errors for both level states of PID and HDP approaches.
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Fig. (8) The average summation error for both level states over iteration of HDP approaches. The

solid lines is the mean of runs, while the shaded color is the standard deviation of the runs
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V. Conclusion

This paper has presented DHDP for controlling on the well-known device using in the oil
and gas industrial, which is QTS. The performance of HDP was excellent during time
compared to PID controller. Merging neural network with oil and gas field presents
improvement the generalization ability of the system with dealing with dynamic change in the
environment. A significant advantage to boost the efficiency of control the level of tanks is

demonstrated in this paper.

Nomenclature

HDP Heuristic Dynamic Programming
QTS Quadruple Tank System

MIMO Multi-Inputs Multi-Outputs

PID Proportional Integral Derivative
ADP Approximate Dynamic Programming
DHP Dual Heuristic Programming

AD Action-Dependent

ADDHP  Action-Dependent Dual Heuristic Programming
ADHDP  Action-Dependent Heuristic Dynamic Programming
PLC Programmable Logic Control

RTU Remote Terminal Unit
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