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Abstract 
 
Recently, solving the optimization-control problems by using artificial intelligence has widely 

appeared in the petroleum fields in exploration and production. This paper presents the state-

of-the-art reinforcement-learning algorithm applying in the petroleum optimization-control 

problems, which is called a direct heuristic dynamic programming (DHDP).  DHDP has two 

interactive artificial neural networks, which are the critic network (provider a 

critique/evaluated signal) and the actor network (provider a control signal). This paper focuses 

on a generic on-line learning control system in Markov decision process principles. 

Furthermore, DHDP is a model-free learning design that does not require prior knowledge 

about a dynamic model; therefore, DHDP can be appllied with any petroleum equipment or 

devise directly without needed to drive a mathematical model. Moreover, DHDP learns by 

itself (self-learning) without human intervention via repeating the interaction between an 

equipment and environment/process. The equipment receives the states of the 

environment/process via sensors, and the algorithm maximizes the reward by selecting the 

correct optimal action (control signal). A quadruple tank system (QTS) is taken as a benchmark 

test problem, that the nonlinear model responses close to the real model, for three reasons: 

First, QTS is widely used in the most petroleum exploration/production fields (entire system or 

parts), which consists of four tanks and two electrical-pumps with two pressure control valves. 

Second, QTS is a difficult model to control, which has a limited zone of operating parameters 

to be stable; therefore, if DHDP controls on QTS by itself, DHDP can control on other 

equipment in a fast and optimal manner. Third, QTS is designed with a multi-input-multi-
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output (MIMO) model for analysis in the real-time nonlinear dynamic system; therefore, the 

QTS model has a similar model with most MIMO devises in oil and gas field. The overall 

learning control system performance is tested and compared with a proportional integral 

derivative (PID) via MATLAB programming. DHDP provides enhanced performance 

comparing with the PID approach with 99.2466% improvement. 

 
 متحكمات التعلم الذاتي في صناعة النفط والغاز

 

 الملخص
في الآونة الاخيرة، تم استعمل الذكاء الاصطناعي بشكل واسع في حل المشاكل في الصناعات النفطية سواء كانت 

في التنقيب او في الانتاج. هذا البحث يستعمل احدث الخوارزمية متخصصة بالذكاء الاصطناعي في التعلم 

حل مشاكل و السيطرة على المعدات النفطية، حيث ان هذه الخوارزمية تسمى خوارزمية البرمجة الاجباري ل

الديناميكية المباشرة. خوارزمية البرمجة الديناميكية تتكون من شبكتين عصبيتين احدهما تسمى الشبكة الناقدة و 

و المسيطر والتي تجهز اشارة السيطرة التي تجهز اشارة تقيم الاداء، اما الشبكة الثانية تسمى الشبكة الممثل ا

 .للمعدات المراد السيطرة عليها

أن خوارزمية البرمجة الديناميكية مصممة لتعليم المسيطرات بدون معرفة النموذج الرياضي للمعدات أو الاجهزة و 

ة ان تتكيف هي تتعلم بشكل مباشر بدون التدخل البشري و بحسب مبادئ نظرية ماركوف. اي يمكن لهذا الخوارزمي

للسيطرة على المعدات مع تغير الظروف و ضمن شروط البيئية المختلفة و بدون الرجوع الى البشر، اي يكون 

التعلم ذاتي وذلك من خلال تكبير اشارة الربح (او تقليل اشارة الخطأ). في هذا البحث تم اختيار نموذج صعب 

سباب. اولا: ان نظام الرباعي الخزانات يوجد في معظم السيطرة و الذي يسمى نظام الرباعي الخزانات لثلاث ا

المجالات النفطية (النظام بشكل كامل او اجزء النظام). حيث يتكون من اربع خزانات مربوطة سوية مع مضختين 

كهربائي. ثانيا: ان نظام الرباعي الخزانات هو -كهربائيتين و عدد من الصمامات ابرزها صمامان ذي تحكم هوائي

عقد صعب السيطرة علية. لذلك اذا خوازمية البرمجة الديناميكية تمكنت من السيطرة على النظام، فيكون من نظام م

السهولة للخوارزمية ان تسيطر على اي نظام ذي نموذج اسهل. ثالثا: ان نظام الرباعي الخزانات هو نظام متعدد 

ت النفطية ذات ادخالات و اخراجات متعددة. هذا الادخالات و الاخراجات، لذلك هو يوائم معظم الاجهزة و المعدا

البحث تم اختباره مع اشهر مسيطر والذي يستعمل حاليا في المعامل و المنشئات النفطية او الصناعية هو مسيطر 

التفاضلي وتم اختباره و مقارنته مع خوارزمية البرمجة الديناميكية و التي تم تنفيذها بواسطة -التكاملي-النسبي

الماتلاب (حيث ان مخرجات الموديل اللاخطي مقاربة جدا للاختبارات العملية الواقعية). حيث تبين ان برنامج 

خوارزمية البرمجة الديناميكية تسيطر على النموذج رباعي الخرانات بشكل افضل و اسرع من حيث عدم تجاوز 

ي (التعلم من الصفر و بدون التدخل القيم المطلوبة و بفترة زمنية قصيرة وكل هذا تتم من خلال التعلم الذات

مقارنة  %99.2466البشري). حيث ان النتائج المستحصلة بأستعمال خوارمية البرمجة الديناميكية قد تحسنت الى  

 .التفاضلي–التكاملي -مع مسيطر النسبي
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I. Introduction 

Approximate dynamic programming (ADP) is useful tool to overcome a behavior of 

nonlinear systems [1]. ADP has three categorizes [2]: heuristic dynamic programming 

(HDP), dual heuristic programming (DHP) and globalized DHP. ADP has two neural 

networks: actor and critic to provide optimal control signal and the long-cost value, 

respectively. If the action-dependent (AD) form is used in ADP (ADHDP for HDP and 

ADDHP for DHP). ADP is used in many real applications. For instance, [3] presents how 

control on turbo-generator. [4] shows the ability of DHP to solve swarm robot problems. [5] 

and [6] illustrated that ADHD P can obtain an optimal path by multi-robot navigation. 

Recently, [7] and [8] are used with Atari game to solve many hard problem with huge 

number of states. All previous ADP approaches are used temporal difference learning 

algorithm based on Markov decision process. A Markov Decision Process contains a set of 

model states, a set of actions, and a reward or cost function and system model. The core of 

Markov decision process is to find a sequence of actions for certain state that make the cost 

low or long-go reward high. The main purpose and aim of this paper is how using the HDP 

approach to control on a process of a quadruple-tank system (QTS), which is frequently 

used in oil and gas industrial. QTS consists of four interconnected tanks and two motor-

pumps [9]. HDP is used to control voltage of two pumps to follow the desired level (set 

point level value) of tanks, which is a first approach appearing in the literature. This paper 

presents a self-learning algorithm to build a controller from scratch without human 

intervention to control on tanks level of QTS.  

 

II. Devices and experiments 

This section presents the aspects of HDP as in [2] and [6] with details of learning of the 

nonlinear QTS model as in [9]. 

A. Architecture of The HDP approach 

The main block diagram for the featured DHDP illustrates in Figure (1). 
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Fig. (1) Block diagram for HDP. u_t  is the action vector at time t to control on the motor-
pumps of QTS that comes from actor neural network (the controller), while the value 

function ( J_t  ), which is single long - cost value, comes from critic neural network. s_t is 
the input states vector at time t, which is represented by the tank levels. A reinforcement 

function (r_t) can get from linear quadratic equation. The backpropagation learning path 
is shown by dashed lines for actor and critic networks. 

 

As shown in Figure (1), the model produces a prediction of the next state and next reward. 

HDP uses to solve the Bellman’s optimality equation, which is written as [6]. 

          (1)                                                                                                      

according to Markov decision process principles, the    is the optimal value function of 

the current state ;  is the transition probability to move to the next state  with action, , 

that belong to  (in this paper,  and  is the discount factor, which is between 0 and 

1. Therefore, The Bellman’s optimality equation obtains as follows: 

           (2) 

The optimal control  is given as follows: 

.         (3) 

As shown in [6], DHDP consists of blocks called the action network and critic network.  It 

also uses online learning for the neural networks. The control signal is generated from actor 

neural network (controller), which is evaluated by the critic neural network. Both critic and 

actor have one hidden layer. The temporal difference error for the critic network is defined as: 

                                 (4) 

System 
(QTS) 

Critic 
Network 

Actor 
Network  

 

 

 

 

  

  

 

- 

- 



No.30- (3) 2021  Journal of Petroleum Research & Studies (JPRS)        

   
 

E22 
 

And 

                                                     (5) 

The gradient-based adaptation for the weights update rule in the critic network can be given 
by 

,                                        (6) 

                                          (7) 

                                              (8) 

Where,  is the learning rate of the critic network at time t, and is the weight vector in 

the critic network.  

Fig. 2 illustrates the critic’s neural network structure. The weight updates from hidden to 

output layer according to backpropagation rules are: 

                                          (9) 

While, the weights updating from input to hidden layer  are: 

          (10) 

where  is the total number of hidden nodes in the critic network;  is the j output 

of the hidden nodes ; is the sigmoid function;  is the row vector for total 

number of inputs to the critic network which consists of  input states concatenated with  

control signals; ;  is the identity matrix,  is a diagonal matrix.  

 
Fig. (2)  Critic multilayer perceptron neural network structure (Sigmoid function is 

applied only for hidden nodes) for hidden nodes. 
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As shown in Figure (1), the error between the desired ultimate objected   to minimize 

the actor error (see [2]) and the approximate value function  is backpropagated through 

critic network. The error function of an action network can be defined as 

.                                                           (11) 

Therefore, the objective function in the action network is 

                                                                (12) 

The weight updating in the action network is given as follows: 

                                                  (13) 

                                                   (14) 

                                                  (15) 

Where the learning rate of the action is network at time t, and is the weight vector in the 

action network.  

Figure (3) illustrates the actor network. The weight updates from hidden to output layer 

according to backpropagation rules are: 

    (16) 

While, the weights updating from input to hidden layer  are: 

 

,                   (17) 

where  is the number of hidden neurons; is the jth output from action network;  is the 

weight values which are associated with the input states from the action network,

from ;   is the jth output of the hidden nodes of the action network, 

.  Both critic and action learning rate decrease with time until a certain small value 

as we present in the result section. 
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Fig. (3)  Action multilayer perceptron neural network structure (sigmoid function is 

applied for all nodes) 

 

B. Architecture of The QTS  approach 

Figure (4) illustrates a schematic diagram of the QTS. Authors in [9] derived accurate 

mathematical model based on both physical and experimental data. They demonstrates that the 

outputs from the model and the outputs from the real process are closed in various situations. 

Two pumps is used to control on the level in the lower two tanks by input voltages ( and ). 

The voltage from level measurement devices are represented the output ( and ). Low of 

Bernoulli and mass balances deferential equations are given as follows [9]: 

,  

,                        (18) 

,    

,  
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Fig. (4)  Schematic diagram of the QTS [9]. 
 

 
Fig. (4)  Schematic diagram of the QTS [9]. 

 

Where, Table (1) presents the values and descriptions of parameters. Equation (18) converts to 

multi-inputs multi-outputs (MIMO) nonlinear state space representation with two inputs 

(pumps voltages) and two outputs (Tank1 and Tank2 levels), which is demonstrated in 

equation (19). In this paper, the system model of DHDP is represented by (19). The Runge-

Kutta 4.5 method is used to solve the differential equation of QTS model. MATLAB V2018b 

is used to implement the entire structure of HDP.  
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Table (1)  The parameters for differential equation QTS model 

 

,                 (19) 

Where , ,  and the time constant is 

defined as follows: 

             

                                                                                                

State variables Value Description 

 28  Cross-section of Tank1 

 32  Cross-section of Tank2 

 28  Cross-section of Tank3 

 32  Cross-section of Tank4 

 0.071  Cross-section of outlet hole of Tank1 

 0.057  Cross-section of outlet hole of Tank2 

 0.071  Cross-section of outlet hole of Tank3 

 0.057  Cross-section of outlet hole of Tank4 

 ------ cm Liquid level of Tank i 

 0.7 Constant of the three-way valve1 

 0.6 Constant of the three-way valve2 

 ------ V Required voltage for pump1 

 ------ V Required voltage for pump2 

 3.33   Converter for input 1 

 3.35   Converter for input 2 

 981 /  The acceleration of gravity 



No.30- (3) 2021  Journal of Petroleum Research & Studies (JPRS)        

   
 

E27 
 

III. Plots and Discussion of Simulation Results  

In this section, the comparison between the proportional integral derivative (PID) as in [10], 

and our approach (DHDP). These PID gains are given in the PID transfer function:  

,                                                                   (20)    

Where  is proportional gain,  is integral gain,  is derivative gain, and  is the first-order 

derivative filter gain (for reducing noise and distortions). In this paper, we used two PID 

controllers (one for pump1 and the other for pump2). The values for these gains are taken from 

[10] with improvement by using try-and-error method, which are  = 3,  = 1.2,  = 0.1, 

and  = 108 for the PID of pump1, the PID gains for pump2 are  = 2.7,  = 1.2,  = 

0.0675, and  = 100. The basic HDP parameters are described as follows: the discount rate is 

0.95; critic learning rate is 0.05 and the actor learning rate is 0.01; the training for either 

network will be terminated if the error drops under 1e – 2 or if the number of iterations meets 

the stopping threshold. The number of neurons in the hidden layer is  for critic network and 

 for actor network. Figure (5) shows the states of level tank1 after using PID and HDP 

during 1000 sec. Clearly, the HDP approach has better performance comparing with PID with 

fast response and no overshoot. Moreover, the level state in tank 1 has better steady-state 

complaining with PID as shown in zoom-in of Figure (5). Similarly, Figure (6) shows the states 

of level tank2 after using PID and HDP during 1000 sec. whereas, the HDP approach has better 

performance comparing with PID with fast response and small value of overshoot. Figure (7) 

presents the summation of errors of two level states during time. Clearly, the HDP approaches 

have small error comparing with PID controller. Figure (8) shows the average of level errors 

over learning iterations (2000 times) with zoom-in for last iteration with 5 different runs. The 

controller of HDP (actor network) is taken for last iteration, which is semi-optimal controller, 

because of last error. 

 

IV. Technical and Economic Feasibility 

The mean-squared-error with the PID approach is 0.3849, while the mean-squared-error with 

the HDP approach is 0.0029. That means, the improvement percentage is 99.2466%, which 

yields a very efficiency of using electrical power. However, the HDP approach has better 

results and more reliable to use, but HDP requires building two neural networks and high-

speed computer for training and leaning the critic and actor networks. Because of most 
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equipment in our company has programmable logic control (PLC) devices, the neural network 

block is already existed in the toolbox of PLC programing. Therefore, this project can apply in 

real by installing PLC or (remote terminal unit – RTU) near to any equipment with HDP 

toolbox connected to the sensors and actuators of certain equipment. At first time, the HDP 

toolbox in PLC or RTU are learnt by itself to build suitable robust controller (actor network). 

Then, the HDP controller is used during normal situations, while if any hard sadden events 

happen to the equipment that change the internal model (the PID controller cannot handle it), 

the HDP toolbox starts learning from scratch again to overcome the new situations.   
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Fig. (5)  The level of Tank 1 state coming from PID and HDP approaches with zoom-in. 
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Fig. (6)  The level of Tank 2 state coming from PID and HDP approaches with zoom-in. 
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Fig. (7)  The summation of errors for both level states of PID and HDP approaches. 
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Fig. (8)  The average summation error for both level states over iteration of HDP approaches. The 

solid lines is the mean of runs, while the shaded color is the standard deviation of the runs 
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V. Conclusion 

This paper has presented DHDP for controlling on the well-known device using in the oil 

and gas industrial, which is QTS. The performance of HDP was excellent during time 

compared to PID controller. Merging neural network with oil and gas field presents 

improvement the generalization ability of the system with dealing with dynamic change in the 

environment. A significant advantage to boost the efficiency of control the level of tanks is 

demonstrated in this paper. 

 

Nomenclature 

HDP             Heuristic Dynamic Programming 

QTS             Quadruple Tank System  

MIMO         Multi-Inputs Multi-Outputs 

PID           Proportional Integral Derivative 

ADP          Approximate Dynamic Programming 

DHP             Dual Heuristic Programming 

AD               Action-Dependent  

ADDHP       Action-Dependent Dual Heuristic Programming 

ADHDP       Action-Dependent Heuristic Dynamic Programming 

PLC             Programmable Logic Control 

RTU            Remote Terminal Unit 
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