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Abstract: 

The calculation of the oil density is more complex due to a wide range of pressures 

and temperatures, which are always determined by specific conditions, pressure and 

temperature. Therefore, the calculations that depend on oil components are more 

accurate and easier in finding such kind of requirements. The analyses of twenty live 

oil samples are utilized. The three parameters Peng Robinson equation of state is 

tuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-

Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oil 

from the given composition, pressure and temperature for 20 samples. The tuned 

equation of state is used to generate oil viscosity values for a range of temperature and 

pressure extends from the reservoir to surface conditions. 

The generated viscosity data is utilized in the neural network tool (NN) to get fitting 

model correlates the viscosity of oil with composition, pressure and temperature. The 

resulted error and the correlation coefficient of the model constructed are close to 0 

and 1 respectively. The NN model is also tested with data that are not used in set up 

the model. The results proved the validity of the model. Moreover, the model’s 

outcomes demonstrate its superiority to selected empirical correlations. 
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 عمل نموذج بالشبكة العصبية للزوجة النفط لمكامن جنوبي العراق

 

 الخلاصة:

على نطاق واسع من الضغوط ودرجات الحرارة، والحسابات التي  هنالك صعوبة كبيرة في حساب كثافة النفط

تجرى لهذا الغرض دائما ما تكون محددة بشروط وضغط وحرارة معينين، لذلك فأن الحسابات التي تعتمد على 

 مكونات النفط تكون أكثر دقة وسهولة في ايجاد هكذا نوع من المطاليب.

عشرين نموذج جمعت من مختلف حقول جنوبي العراق، استخدمت في هذا البحث تم استخدام تحاليل مختبرية ل

) لعمل التطابق بين لزوجة النفط المخرجة من Parameters Peng-Robinson 3في هذا البحث معادلة (

) هي الطريقة المتبعة LBC Correlationالتحاليل المختبرية وبين المحسوبة بواسطة البرنامج المستخدم. (

لجميع الابار المستخدمة تحت ضغوط ودرجات حرارة مختلفة اعتمادا على مركبات نفوط لحساب لزوجة النفط 

هذه الابار. معادلة الحالة استخدمت لايجاد تطابق جيد بين قيم اللزوجة المقاسة والمحسوبة وكذلك ايجاد قيم جديدة 

 للزوجة لنطاق واسع من درجات الحرارة والضغط.

) لايجاد نموذج الكتروني لحساب Neural Networkمج الذكاء الصناعي (ادخلت اللزوجة المحسوبة في برنا

لزوجة النفط باستخدام التركيب والضغط والحرارة، بعد ايجاد النموذج وجد ان نسبة الخطأ كانت ضئيلة جدا مما 

لم  يبرهن نجاح عملية النمذجة، كذلك تم فحص النموذج للتأكد من صحة عمله وذلك بأدخال بيانات بئر جديد

 تدخل بياناته في عملية النمذجة وكانت النتائج مطابقة للقيم المقاسة.

Introduction: 

Viscosity is a very important parameter that governs the flow of fluids either in a 

porous media or through transporting pipes. Sometimes, the measurement of oil 

viscosity is costly especially when the oil has dissolved gas. Therefore, a number of 

correlations [2-9] have been developed to provide alternative tool for getting the 

viscosity of specific hydrocarbon at the certain conditions. The most common 

correlation is the Lohrenz-Bray-Clark [1] (LBC). LBC is an efficient tool for viscosity 

estimation for the operating time management. Therefore, it is usually used in 

reservoir simulation where the execution time is a principal factor. 

In this work, 20 live sample analyses are implemented. The data has been provided as 

PVT reports. The reports include the measurement of oil viscosity at certain 

temperatures with pressure values ranging from atmospheric pressure up to the initial 

reservoir pressure. The PVT reports also include the composition of oil with one 
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pseudo component. The saturation pressure is also recorded for each sample at a given 

temperature. 

The above-mentioned data is used to tune an equation of state using using the 

principle of the corresponding state for computing the oil viscosity. The viscosity is 

calculated by LBC correlation, which is then used to create viscosity data used in 

developing the model. The oil viscosity model is the ultimate target of the current 

project. A nonparametric regression method is elected to correlate the data. The neural 

network [10] technique is selected for creating the model.  

Viscosity matching: 

     In this work, the composition of 20 Iraqi oil samples is considered. The samples 

were taken from several southern Iraqi oil fields, reservoirs, and wells. Before 

estimating the oil viscosity from its composition, temperature, and pressure, the 

experimental data should be fitted with the results of the equation of state. In the 

tuning of the equation of state, its variables are adjusted well to make its results close 

enough to the experimental test. The used oil properties in tuning phase are the 

saturation pressure and oil properties at pressure range from the atmospheric pressure 

to the initial reservoir pressure. The good match between real PVT data and calculated 

data is necessary to generate a large set of viscosity values in different temperatures. 

This set of values is used in neural network fitting tool to get a good viscosity 

correlation.  

 Matching is done with PVTi software by doing regression for the equation of states 

parameters such as critical pressure, critical temperature, and the acentric factor for all 

components. Matching between calculated and real data is tested by the root mean 

square (RMS) of these values. The smallest RMS is found for the best match. Table 

(1) and Figure (1) show the matching of one of the wells that are adopted in this work 

(Amara-4).  
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Table (1) Matching Between Calculated and Observed Viscosity 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
Fig. (1) Matching Between Calculated and Observed Viscosity 

 

 

Well no. Am-4 
Field Amara 

Formation Mishrif 
Bottom Hole Temperature 210.2  ̊ F 

Observed  Saturation Pressure 2588.04 psi 
Calculated Saturation  Pressure 2596.988 psi 

RMS% 0.026483 
Liquid Viscosity, cp 

Pressure Observed Calculated (RMS) %  
5688 1.808 1.8065 0.08109 
4977 1.696 1.6922 0.22370 
4266 1.584 1.5765 0.47276 
3555 1.472 1.4596 0.84412 
2844 1.36 1.3415 1.35690 

2596.988 - 1.3003       - 
2588.04 1.3 1.3042 0.32371 

2133 1.5 1.5227 1.516 
1422 1.976 1.9646 0.57571 

14.695 4.8224 
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Generating Viscosity Data 

To create a viscosity model, a large set of data is needed. Different temperatures 

values were used to produce viscosity. The temperature values were (100, 120, 140, 

160, 180, 200, 220, 240, 260, 280 and 300) ̊ F. These values were from the range of 

reservoir temperature values of 20 wells that are used in this work. The range of 

pressure used is from the initial pressure to the surface pressure of each well. The 

calculation was applied to all oil wells and 4609 viscosity values were calculated. 

These values are used in neural network function to get the viscosity model. 

Viscosity Model 

The nonparametric regression tool, neural network, is proved to produce good fitting 

models even if the network is a simple one. Consequently, this technique is adopted in 

the current work. Neural network function needs 3 sets of data; training data, 

validation data, and test data. Training data are the set of data that would be used to 

train the proposed network. The network is adjusted according to the training data as 

giving the minimum error. Validation data are used to measure the network 

improvement and would stop the training process when the improvement ceased. The 

test data are measuring the performance of the model independently. These three sets 

of data are provided from the calculated viscosity data. 

The inserted data were the mole fraction of each component, pressure, and 

temperature, which were inserted as an input data (3 independent variables). Viscosity 

data were inserted as a target data. The results found from inserted the data of 20 

wells is represented in the following points. The correlation coefficient, R, is an 

indication of the relation between the target and the output. The value of R ranges 

from 0 to 1. Zero value of R means there is no relation between the input and the 

target. On the other hand, the values are the average of the squared divergence 

between the target and the output. The perfect value of this variable is zero when all 

inputs coincide with all of the outputs.  

Three different models are found. First model has been made with Levenberg-

Marquardt [11] back propagation, which is usually the fastest. The second model has 
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been made with Bayesian Regularization [12, 13] back propagation, which takes 

longer time but may be better for challenging problems, like existence of many 

independent variables and their large amount and differences of them .While the third 

model has been made with scaled conjugate gradient [14] back propagation, which 

uses less memory and so it is suitable in low memory situations. 

The difference between the three neural network models is presented in Figures (2 to 

10).  

Figures (2) to 4 show the regression plots of the models. Regression plots explain the 

difference between the calculated output and the input target. The equation that shown 

in the y-axes in regression plot represent the best straight line that means the target 

factor much closer to 1 gives better result, and the constant must be closest to zero.  It 

was found from the results that the second model was the best one.  

 
Fig. (2) Regression plot of model 1 

 

 
Fig. (3) Regression plot of model 2 
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Fig. (4) Regression plot of model 3 

Figures (5 to 7) show the error histogram of each model. This plot shows the instance 

of the error of the model. The x-axes represent the instance of viscosity values, while 

the y-axes represent the frequency of the points having the mentioned error in 

viscosity values. The negative errors values mean the results are lower than the inputs 

and the positive values mean the results are higher than the inputs. Figure (5) shows 

the median of the instance (1400 values of viscosity) is at error value of (0.002179), 

while Figure 6 shows the median (1600 values) error is (-0.0582) and Figure (7) 

shows that (2000 values) is at error of (-0.04326). In Figures (5 and 6) showed  the 

scale of the error axes is between (-0.4 to 0.35) while  it is between (-1 to 2.21) in 

Figure (7). This means the third model have the highest error values. It is noticed 

from the comparison between histograms of the first and second models, Figures (5) 

and 6 that the instance of values for the first one is approximately 2000 values at 

errors between (-0.04 to 0.04) while  for the second one is about 1400 values at error 

of  0.02, which means the second model is the best one. 
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Fig. (5) Error histogram of model 1 

 
Fig. (6) Error histogram of model 2 

 
Fig. (7) Error histogram of model 3 

 

The last three Figures (8 to 10) show the performances of the data of each model. 

Performance plot shows the Mean Square Error (MSE) with the number of epochs. 
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The training stops when the validation data reach the best performance. Figure (9) 

shows that in model 2, no validation data has been inserted; that means, the training 

has stopped when the maximum epochs have reached the maximum default number of 

epochs (1000) and the improvement still continuous. However, it is concluded that 

few epochs are required to reach the state of no improvement since the MSE 

approaches to a very small value. 

Viscosity Comparison:  

Viscosity of three wells could be represented in this work. One of these three wells 

wasn’t inserted in the neural network while developing the model (the one unnamed 

well). The viscosity has been calculated with the three models and shown in tables (2 

to 4) with the root mean square error (RMS).  

Data of the same mentioned three wells has been inserted in PVTp software to 

calculate their viscosity with three other empirical correlations which are Beal et al. 

[2], Beggs [3], Petrosky [9]. The results of these three correlations have been 

compared with the result of the three models and shown in Tables (2 to 4). 

In Tables 2 to 4 the measured and calculated viscosities at different pressure for wells 

Hf-1, Am-4, and well (1) are presented. The values of RMS1, RMS2 and RMS3 in 

these Tables represent the errors between the measured values and calculated by 

model1, model2 and model3 respectively. While the errors RMS4, RMS5, and RMS6 

are between measured viscosity and these obtained from Beal et al., Beggs, and 

Petrosky correlations respectively. Figures (11–13) also show the comparison between 

measured and calculated viscosity values for each well.  

Comparison of RMS1, RMS2 and RMS3 with RMS4, RMS5 and RMS6 shows that 

the three developed models have generally better performance than the three 

correlations results. The second model can be considered as the best one according to 

its lower error. 
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Fig. (8) Performance plot of model 1 

 
Fig. (9) Performance plot of model 2 

 
Fig. (10) Performance plot of model 3 
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Fig. (11) Viscosity matching of the three models, Hf-1 

 

 
Fig. (12) Viscosity matching of the three models, Am-4  
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Fig. (13) Viscosity matching of the three models, well (1) 

 

Conclusions: 

1. A viscosity model was developed to calculate the viscosity of oil in the fields of 

southern part of Iraq using the mole fractions of the component, pressure, and 

temperature. 

2. The calculated viscosity was found very close to the measured viscosity due to the 

perfect match exhibited by the new model.   
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