Effect of Cationic Surfactant in the Synthesis Process of Nano γ-Alumina for Petroleum Industry Application

Mustafa H. Flayyih*, Mohammed S. Theib

Catalyst and Zeolite Section, Petroleum Research and Development Center, Ministry of Oil, Iraq

*Corresponding Author E-mail: mustafa.eng70@yahoo.com

Received 24/1/2022, Accepted in revised form 8/3/2022, Published 15/12/2022

Abstract

Nanotechnology is widely used in industries, including catalyst synthesis for oil and gas industries to enhance and perform new Characteristics of materials. Cetyl tri methyl ammonium bromide (CTAB) cationic surfactant was used in the synthesis of spherical nanostructured γ-alumina to enhance the morphology of the prepared nano gamma alumina which is used as a catalyst support in the naphtha reforming process. The preparation was carried out by co-precipitation method by adding drop wise of ammonium hydroxide solution and aluminum nitrate nonahydrate solution simultaneously to a solution of surfactant medium, PH and temperature of reaction were kept at 8 and 30 °C respectively. The gamma alumina obtained were characterized by X-Ray Diffraction (XRD), nitrogen adsorption-desorption analysis (ASAP 2020, Micromeretics) and atomic force microscope (AFM). The sample of synthesized gamma alumina with the CTAB cationic surfactant showed that surface area (314 m2/g), pore volume (0.37 cm3/g), and pore size (3.6 nm).

Keywords: Nanotechnology; gamma alumina; surfactant; surface area; pore volume.

تأثير اضافة مواد تقليل الشذ السطحي الموجبة في تصنيع نانو كاما الومينا للصناعة النفطية

الخلاصة:

تستخدم تقنية النانو على نطاق واسع في الصناعة، بما في ذلك استخدام العوامل المحفزة في صناعات النفط والغاز للحصول على خصائص جديدة للمواد وتحسين مواصفاتها. تم استخدام كعبيم حقهٍم نهشذ انهٍذسوكسٍذ الأيىٍَىو ويحهىل َخشاث الأنىيٍُىو غٍش انًبئً فً وقج واحذ إنى يحهىل سٍخٍم ثلاثً يثٍم بشويٍذ الايىٍَىو، وحى انًحبفظت عهى الأط انهٍذسوجًٍُ ودسجت حشاسة انخفبعم عُ ذ 8 و 03. دسجت يئىٌت عهى انخىانً ، وحى انًحضشة بىاسطت جهبص الاشعت انسٍٍُت (XRD)، وجهبص الايخضصاح انفٍضٌبوي ببنٍُخشوجٍٍ، ويجهش انقىة انزسٌت (AFM). دنحىيات انخفبعم عهى انًبئً فً وقج واحذ إنى يحهىل سٍخٍم ثلاثً يثٍم بشويٍذ الايىٍَىو، وحى انًحبفظت عهى الأط انهٍذسوجًٍُ ودسجت حشاسة انخفبعم عُ ذ 8 و 03. دسجت يئىٌت عهى انخىانً، وحى انًحضشة بىاسطت جهبص الاشعت انسٍٍُت (XRD).
1. Introduction

Aluminum oxide is useful in petroleum industry because of their excellent properties, such as high abrasion resistance, good insulation, high hardness, excellent dielectric strength at high voltage, thermal stability with a melting point of 2050 °C, and high resistance to chemical attack. As a result of its own textural properties and morphology, gamma alumina is commonly used as a catalyst support and adsorption. This is due to its improved properties, which include high thermal stability, surface area, pore volume, pore size, amphoteric and hydrolytic properties [1]. Gamma alumina (γ-Al₂O₃) is possibly the most important transition aluminas known, with applications as a catalyst and catalyst support in the oil and gas industries. This oxide's usefulness can be attributed to a favorable combination of its textural properties, such as surface area, pore volume, and pore size distribution, and its acidity and basicity properties, which are primarily related to surface chemical components, structure, and phase composition. The chemical and hydrothermal stability of γ-Al₂O₃ remains an issue for catalytic applications [2]. J.L. Contreras et al. used the precipitation method with Al₂(SO₄)₃, (NH₄)OH, and the cationic surfactant cetyl-trimethyl ammonium bromide (CTAB) to create gamma alumina nano powder. CTAB concentration was varies from 0 to 0.1 M. The surface area of the prepared aluminas was (94-113) m²/g [3]. S. Faramawy et al synthesized crystalline nano alumina with high surface area (375 m²/g) via microwave irradiation at different times and watts using the sol gel method, aluminum hydroxide as starting material with ammonium hydroxide solution, and CTAB as template [4]. Jae Sung Lee et al. prepered nanotube gamma alumina with a large surface area and good thermal stability by combining aluminum alkoxide and cationic, ionic, and non ionic surfactants in an organic liquid. The final results shows that surface area (241-429 m²/g) and pore size (4.5-7.2 nm) [5]. L. A. Avinash Chunduri et al synthesized gamma alumina in nano size using aluminum nitrate as an oxidizer and urea or hexamethylenetetramine (HMT) as fuel with varies surfactants. Gamma alumina has a fairly uniform spherical morphology with a lower size distribution of (40–60 nm). The specific surface area obtained was (160–240 m²/g) [6]. Wen Qian Jiao prepared mesoporous gamma alumina by using Al(NO₃)₃·9H₂O and NaAlO₂ as aluminum sources, and a template of cationic and anionic surfactants (CTAB) and dodecyl sodium sulfate (SDS) by using cationic-anionic double hydrolysis (CADH) method.
The obtained gamma Al$_2$O$_3$ made up of nanoparticles with lengths ranging from 50 to 100 nm. Other characteristics include a high specific surface area (261 m2/g), a large pore volume (0.79 cm3/g), and a large pore size (12.1 nm) with a narrow pore size distribution [7]. Ming Bo Yue et al synthesized -alumina using CTAB as a surfactant, Al(NO$_3$)$_3$.9H$_2$O and NaAlO$_2$ as aluminum sources, citric acid and sodium citrate as structure direct agents, the resulting mesoporous gamma alumina with high specific surface area (398 m2/g) and large pore volume (0.59 cm3/g) [8]. Ming Bo Yue et al. also synthesized mesoporous alumina using (CTAB) and structure direct agents like sodium tartrate, citrate, or succinate. Aluminium Sulfate Octadecahydrate Al$_2$(SO$_4$)$_3$.18H$_2$O as an aluminum source, and urea as a precipitating agent. Pore volume 0.28-0.5 cm3/g and surface area 172-325 m2/g [9]. Changhua Hu et al. created mesoporous aluminas with varying textural properties in aqueous solution using a combination of surfactants such as sodium dodecylsulphate (SDS), cetyltrimethyl ammonium bromide (CTAB), and polyethylene glycol (PEG).The results shows an alumina with a high specific surface area (267 m2/g), pore volume (0.64 cm3/g), and pore diameter (9.3 nm) [10]. For the high importance of gamma-alumina in the preparation of catalysts that are used in the many petroleum industries. moreover, nano gamma-alumina has unique specifications that were synthesized by the Co-precipitation method and characterized it to achieve this goal.

2. Materials & Methods:

2.1 Materials:

Aluminum nitrate nonahydrate {Al(NO$_3$)$_3$.9H$_2$O} 98% Assay (Thomas Baker Chemicals Pvt. Ltd. Co.) was used as a precursor of alumina, ammonium hydroxide {NH$_4$OH} 25 weight% solution (Chem Lab NV Co.) as a source of hydroxide ions, cetyl trimethyl ammonium bromide {CTAB}99% assay (HiMedia Laboratories Pvt. Ltd. Co.), and deionized water.

2.2 Experimental Procedure of Preparation:

Nano γ-Al$_2$O$_3$ was synthesized as follows:

$$\text{Al} \ (\text{NO}_3)_3.9\text{H}_2\text{O} \ + \ 3\text{NH}_4\text{OH} \ \longrightarrow \ \text{Al} \ (\text{OH})_3 \ (s) \ + \ 3\text{NH}_4\text{NO}_3 \ \text{------(1)}$$

$$\text{Al} \ (\text{OH})_3 \ \longrightarrow \ \text{AlOOH} \downarrow + \ \text{H}_2\text{O} \ \text{------(2)}$$

$$\text{AlOOH} \longrightarrow \ \frac{1}{2} \ \text{Al}_2\text{O}_3 \ + \ \frac{1}{2} \ \text{H}_2\text{O} \ \text{------(3)}$$
1 M of aluminum nitrate nonahydrate was poured into a separating funnel and 5 M of ammonia solution was poured into another separating funnel. After that, both solutions were allowed to drop wise into deferent concentration of CTAB solutions (0.0025, 0.005, and 0.01 M) as the reaction medium, and another reaction was carried out without surfactant, as shown in Table (1). These reactions were proceed under continuous stirring using a magnetic stirrer for two hours at room temperature taking into consideration adjusting the pH value at (7.5-8.5) by adding a nitric acid solution as shown in Figure (1). As a result a precipitate of Al(OH)_3 would appear, left it overnight for aging. The precipitate was separated from the solution by filtration and washing with two liters of deionized water, then filtrate again and drying at (60°C) for 12 hours. Nano Gamma alumina was obtained from calcination powder for 2 hours at 550°C at a rate of 10°C/min.

<table>
<thead>
<tr>
<th>Table (1) Experimental Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al(NO₃)₃·9H₂O</td>
</tr>
<tr>
<td>Molarity (M)</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

Fig. (1): Schematic diagram of the laboratory glassware and tools used
3. **Results and Discussions:**

The synthesized materials have been characterized by XRD (x-ray diffraction), AFM (atomic force microscope), and N2 adsorption–desorption. Apparently spherical nano-sized particles were obtained with crystallite size in the range (nm) by peaks broadening calculation.

3.1 XRD Patterns:

The XRD patterns of all samples shown below in (Figure 2 (a), (b), (c), and (d)) are in the gamma phase and crystalline. Crystallite sizes were calculated in comparison table (2) using Debye–Scherrer equation:

\[D = \frac{k \lambda}{\beta \cos \theta} \quad \text{-------- (4)} \]

Where \(D \) is the crystallite size (nm), \(k \) is a constant (0.94 for spherical particles), \(\lambda \) is the wavelength of the x-ray radiation (Cu-K\(\alpha = 0.1541 \) nm), \(\beta \) is the full width at half maximum (FWHM) of the intense and broad peaks and \(\theta \) is the Bragg’s or diffraction angle.

XRD pattern shows big matches with the database standard (0010-0425 ICDD International Centre for Diffraction Data database) at three basic reflections (2\(\theta =37.6 \), 2\(\theta =45.8 \) and 2\(\theta =67.03 \)). Broadening of the peaks clearly shows the nano size nature of crystallites. From eq.(4) we see that the relation between Peak Width and crystallite size an inverse relation, i.e as the cos \(\theta \) enlarged the crystallite became smaller and also peak intensity became shorten and as peaks became broaden the intensity became shorten also signifying greater degree of structural disorder [11].

![XRD Patterns](image)
3.2 Atomic Force Microscope Characterization:

Atomic Force Microscopy shows that all samples in the nanosize range (nm). Particle size was analyzed by using the Atomic Force Microscope. The mean particle size for A, B, C, and D, samples were found to be (A: 43.8, B: 34.4, C: 17.06, and D: 40.01) nm as shown in Figure (3). The difference between values examined by AFM and XRD were illustrated in Table (2) i.e. due to the principle of measuring the AFM would be more accurate than XRD results.

| Table (2) Crystalline and particle size for different concentration of CTAB |
|---------------------------------|---|---|---|---|
| | A | B | C | D |
| Mean crystalline size XRD | 55.3 | 17.6 | 15.6 | 23 |
| Particle size AFM | 43.8 | 34.4 | 17.06 | 40.01 |

Fig. (2): XRD patterns of synthesized γ-Al2O3 at different concentration of CTAB.
Fig. (3): AFM image of nano γ-Al₂O₃ prepared with different concentration of CTAB.
3.3 N₂ Physisorption Characterization

Catalytic performance was examined using Nitrogen adsorption isotherm at boiling temperature (-196 C°) to determine catalyst surface area and porous texture. According to IUPAC (International Union of Pure and Applied Chemistry) classification all synthesized samples were in mesoporous (IV type) [12]. BET (Brunauer, Emmet and Teller) specific surface areas and pore volume were measured with an automatic sorptometer on a Micromeritics ASAP 2020 apparatus. Surface area and pore volume obtained were (314 m²/g) and (0.37 cm³/g) respectively at CTAB concentration of 0.005 molary (figure 4).

All results were tabulated in table (3) below, at different concentration of CTAB the optimum concentration is 0.005 M (run C) because surface area reach the best value and pore volume enlarged, above this concentration the CTAB solution tends to aggregate and surface tension be greater[13]. Also all samples were in narrow pore size distribution (figure 5).

<table>
<thead>
<tr>
<th>Run</th>
<th>CTAB Molarity</th>
<th>Surface area (m²/g)</th>
<th>Pore volume (cm³/g)</th>
<th>Average Pore size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>------</td>
<td>234</td>
<td>0.24</td>
<td>3.0</td>
</tr>
<tr>
<td>B</td>
<td>0.0025</td>
<td>239</td>
<td>0.33</td>
<td>3.8</td>
</tr>
<tr>
<td>C</td>
<td>0.005</td>
<td>314</td>
<td>0.37</td>
<td>3.6</td>
</tr>
<tr>
<td>D</td>
<td>0.01</td>
<td>282</td>
<td>0.39</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Fig. (4) Isotherm behavior for nano gamma alumina prepared with different concentration of CTAB.

Fig. (5): Pore size distribution of nano gamma alumina prepared with different concentration of CTAB.
4. **Conclusion**

Nano Gamma alumina successfully prepared by co-precipitation method in presence of CTAB as a surfactant. Essential parameters were studied in our research, isotherm behavior, surface area, pore volume, and pore size. The properties of our synthesized nano gamma alumina and the commercial one specified by Eugene et al and antos, were matches in surface area and pore size while pore volume should be more than 0.5 cm3/g to achieve excellent dispersion of active metals. Surface area enhancement from 234-314 m2/g while pore volume enlarged by approximately 13%.
References:

https://doi.org/10.1016/j.solidstatesciences.2010.12.003

https://doi.org/10.1002/anie.199611021

