DOI: http://doi.org/10.52716/jprs.v12i1(Suppl.).628

Mathematical Model & Feasibility Study for Construction an Invested Refinery of 100,000 (bbl / Day) in AL-Nasiriya Governorate

Omar M. AL-Azzawi^{*}, Harith I. Mohammed, Hussam J. Mousa, Assad O. Rabit, Sura K.

Hussein

Ministry of Oil/ Petroleum Research & Development Center *Corresponding Author E-mail: <u>omar 1981mahmood@yahoo.com</u>

6th Iraq Oil and Gas Conference, 29-30/11/2021

 \odot \odot

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

A mathematical Model and feasibility study of construction an invested Refinery with 100,000 (Bbl/day) in AL-Nasiriya governorate was performed. The project is composed of three Units, Atmospheric Column Distillation Unit (CDU), Catalytic Reformer Unit (CRU) and Residue Fluidized Catalytic Cracking Unit (RFCC) that produce different products. Based on the Platts prices of petroleum products which was provided by State Organization for Marketing of Oil (SOMO) for May of this year and by standard specifications and technical information of Petroleum Research and Development Center (PRDC), Material balance for feed and products as well as optimization process using LINGO software for these three Units were calculated in order to determine influential financial parameters: (NPV), (IRR), (PI) and Payback period of the project. Different calculation scenarios were prepared taking into account discount of crude oil and products prices, inflation indicator of Capital expenditure (CAPEX) and operation expenditure (OPEX) in addition to extending the life of the project and increase in the cost of capital as well. These scenarios are illustrated as followings: -

1- The refinery was considered non-feasible in case of the crude feed price is taken (65\$) and the products prices still constant. Discounted of oil feed was taken gradually by 10% and the products prices stay constant turns the project to be feasible at (50%) discounted oil price which gives positive financial parameters as can be seen in scenario (1), (2) but no longer feasible when increasing inflation by (3%) and (5%) as shown in scenario (3) and (4).

2- The price of crude oil feed was taken constant (65\$) and the products prices were gradually increased by (10%) till (50%) with constant other parameters gives negative financial parameters means non feasibility as can be seen in scenario (5).

3- Increasing products prices by 10% and discount crude oil price by 10% together makes the project feasible at (25%) for both as shown in scenario (6). Conversely, when

inflation was taken into account for OPEX and cost of capital, the project shifted to be feasible at (40%) for both crude oil and products as seen in scenario (7, 8, 9). The crude oil feed price and products was increased gradually by (10%) and decreased by the same percent. Both scenarios give negative financial parameters as shown in (10) and (11). 4- Extending life of project from (4) to (6) years and let other parameters constant including CAPEX to study the impact on the financial parameters. It is noticed that the refinery gives negative income compared to previous period of project in scenarios (12), (13). The cost of capital was increased from 2,100 million to 3000 million with no change in the other parameters gives negative income as seen in scenario (14) and (15). On the other hand, cost of capital and life of project were changed together makes the project worse income due to decline in the financial parameters as illustrated in scenario (14) and (16).

Keywords: CAPEX, OPEX, Depreciation, NPV, IRR, PI.

1. Introduction

Mathematical model is set of equations that are connected to each other linearly or non-linearly to simulate specific process in plant or refinery and to give behavior of that process among different of parameters in environment. based on the goal of the model, maximization profit, minimization cost, effective time of maintenance and management planning can be applied to result different scenarios of output. In this model, a construction an invested refinery will be conducted technically and financially to gain maximum profit. Different scenarios of simulation for long term will pe presented.

2. <u>Refinery Process Description</u>

AL-Nasiriya Refinery is composed of different Units which are classified as simple in the degree of complexity such as Distillation column, Hydrodesulfurization Unit and more complex Unit such as Residue Fluid Catalytic Cracking (RFCC) as shown in the Figure (1). 100,000 (bbl /day) of Basra crude oil of 29.91 API is received to be fractionated in the distillation column to yield different cuts of light and intermediate that are required further processing. Light naphtha is treated in the desulfurization Unit to be sent to the gasoline pool and the extra amount would go to sale. The heavy Naphtha is also treated in the desulfurization Unit and then sent to the Reforming Unit. Reformate of high-octane number is then sent to the pool of gasoline for blending as

marketed finished product. Middle distillates kerosene and light, heavy Gas Oil are also treated to be directed to the market according to the required Iraqi standard characterization. Residue from distillation column is charged to the (RFCC) as feed for conversion to the cracked gasoline. Light and heavy cycle oil are hydrotreated and then sent to market. Prices of products and feed in addition to related information of feasibility analysis are shown in Table (1). Product specifications for sale in market are shown in Tables (2) and (3).

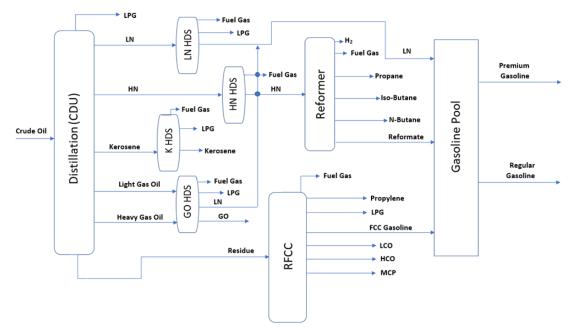


Fig. (1): Schematic Diagram of Units and Streams of Invested Refinery

2021 according to Platts.		
AL-Nasiriya Refinery		
Capacity	100,000 (bbl/day)	
Capacity Expenditure (CAPEX)	2,100,000,000 (billion \$)	
Operation Expenses (OPEX)	5% of capex per year	
Construction Time	48 Months	
Refinery life after start-up	20 Year	
Depreciation per year	105,000,000 (million \$)	
Taxation Rate	According to Iraqi Law	
Inflation	3 % Per Year	
Crude Price	65	
Discount Rate	Should be given or taken as 10 %	
Working days per year	335 Days	
Crude oil API	29.9	
Losses	(1-2) Vol %	

Table (1) Invested Refinery information and prices of feed and products for May,	
2021 according to Platts.	

Product Price(\$/bbl)		
Fuel Gas	Will be used in the refinery	
Propane	39.17	
Iso-Butane	25	
N-Butane	44.99	
LPG	42.08	
Kerosene	70.011	
Light Naphtha	62.42	
Jet Fuel	73.1	
Light Gas Oil	71.304	
Heavy Gas Oil	71.304	
Premium Gasoline	73.769	
Regular Gasoline	67.32	
Propylene	0.34	
Light Cycle Oil	20	
Heavy Cycle Oil	15	
Slurry Oil	12	

Table (2) Gasoline pool specification required for marketing [1].

	Property	Speatication Requirement
Naphtha	RON	74
	RVP (KP)	68
Reformate	RON	100
	RVP (KP)	50
FCC Gasoline	RON	93.5
	RVP (KP)	56

Table (3) Refinery Product specifications

Feature	Regular Gasoline	Premium Gasoline
Octane Number	87≤ Oct ≤91	$Oct \ge 95$
Vapor Pressure	\geq 54	≥54

2.1 Crude Distillation Unit Material Balance (CDU)

Feed: Basra Crude Oil 100,000 BPD = X1

API = 29.91

Component	Boiling Range	Cut Yield Vol	Barrel Per Day
	(°C)	(%)	(BPD)
Fuel Gas	IBP-15	3.2613	
Light Naphtha (LN)	15-80	5.2766	X2
Heavy Naphtha (HN)	80-175	15.393	X3
Kerosene (KE)	175-230	8.8259	X4
Light Gas Oil (LG)	230-340	18.022	X5
Heavy Gas Oil (HG)	340-370	4.5042	X6
Residuum	370-FBP	44.717	X7

Table (4) True boiling point of Crude oil distillated fractions

2.2 Residue Fluid Catalytic Cracking Material Balance (RFCC)

Feed: Residuum (from Distillation Unit) X7 BPD.

Products were assumed close to actual data.

Table (5) Product cuts as volume percentage of RFCC crude oil

Component	Product Yield (vol%)	BPD
Fuel gas	3.80	
Propylene	4.50	X8
LPG	16.40	X9
FCC Gasoline	50.03	X10
Light Cycle Oil (LCO)	12.07	X11
Heavy Cycle Oil (HCO)	3.0	X12
Slurry Oil (MCB)	4.50	X13
Losses	4.80	

2.3 Heavy Naphtha Hydrotreater Material Balance (HN HDS)

Feed: Heavy Naphtha (from Distillation Unit) X3 BPD

Products were assumed close to actual data

Table (6) Product cuts as volume percentage of HN HDS

Component	Product	BPD
Fuel Gas	1	
Heavy Naphtha	98.55	X14
H2S	0.15	
Losses	0.20	

N-Butane

Reformate

2.4 Catalytic Reformer Material Balance (Reformer)

Feed: Heavy Naphtha (From Hydrotreater Unit) X14 BPD

Products were assumed close to actual data

	· · · · · · · · · · · · · · · · · · ·	8
Component	Product Yield (Vol %)	BPD
Hydrogen	11.85	
Fuel Gas	3.70	
Propane	3.81	X15
Iso-Butane	2.30	X16

X17

X18

Table (7) Product cuts as volume percentage of Reformer

2.5 Light Naphtha Hydrotreater Material Balance (LN HDS)

3.30

87.20

Feed: Light Naphtha (from Distillation Unit) X2 BPD

Products were assumed close to actual data

Table (6) Troudet cuts as volume percentage of LN HDS		
Component	Product Yield (Vol %)	BPD
Fuel Gas	1.8	
LPG	2.7	X19
light Naphtha	95.13	X20
H2S	0.07	
Losses	0.20	

Table (8) Product cuts as volume percentage of LN HDS

2.6 kerosene Hydrotreater Material Balance (K HDS)

Feed: Light Naphtha (from Distillation Unit) X4 BPD Products were assumed close to actual data

Table (9) Product cuts as volume percentage of K HDS

Component	Product Yield (Vol %)	BPD
Fuel Gas	1.5	
LPG	3	X21
Kerosene	95.15	X22
H2S	0.15	

2.7 Gas Oil Hydrotreater Material Balance (GO HDS)

Feed: Light and Heavy Gas Oil (from Distillation Unit) X5, X6 BPD Products were assumed close to actual data.

Component	Product Yield (Vol %)	BPD
Fuel Gas	1.0	
LPG	0.5	X23
light Naphtha	3.7	X24
Gas Oil	94.45	X25
H2S	0.9	
Losses	0.20	

Table (10) Product cuts as volume percentage of GO HDS

3. <u>Refinery Mathematical Model</u>

The case study of this Refinery is to maximizing profit which are reflected by sale of the products [3 - 4].

Profit = Sale of Products – Crude Oil Price – Operation expenses

As mentioned above, the limitation of Units will be bounded by:-

Maximum = The Maximum production Capacity of the Unit

Minimum = Requirements of Products specifications or minimum economic for the operation Unit (Unit Operation Cost).

Minimum	Unit Type	Maximum
Product requirement	\leq (CDU) \leq	Unit Capacity
Product requirement	\leq (RFCC) \leq	Unit Capacity
Product requirement	\leq Reformer \leq	Unit Capacity
Product requirement	\leq Kerosene Hydrotreater \leq	Unit Capacity
Min requirement	\leq Gasoline Fuel \leq	Max requirement
Min requirement	\leq Jet Fuel \leq	Max requirement

3.1 Distillation

Accordingly, X1 represent the feed crude oil to the distillation column and the maximum and minimum processing unit are the inequality equations:

$X1 \le 100,000$	Eq. (1)
X1 ≥ 90,000	Eq. (2)
- 0.052766 X1 + X2 =0	Eq. (3)

Note: Fuel gas and Hydrogen are considered used in the Refinery and included in the operation expenses.

Journal of Petroleum Research and Studies

P- ISSN: 2220-5381 E- ISSN: 2710-1096	
Eq. (4)	
Eq. (5)	
Eq. (6)	
Eq. (7)	
Eq. (8)	
Eq. (9)	

X2, X3, X4, X5, X6, X7 represent products of the distillation Unit.

3.2 Residue Fluid Catalytic Cracking

The feed to the RFCC is **X7** according to the Table (4) and the maximum and minimum capacities of Unit are represented in inequality equations are: -

$\mathbf{X7} \leq 45000$	Eq. (10)
X7 ≥ 40,245.3	Eq. (11)
- 0.045 X7 + X8 = 0	Eq. (12)
-0.164 X7 + X9 = 0	Eq. (13)
-0.5003 X7 + X10 = 0	Eq. (14)
-0.1207 X7 + X11 = 0	Eq. (15)
-0.03 X7 + X12 = 0	Eq. (16)
-0.045 X7 + X13 = 0	Eq. (17)
-0.905 X7 + X8 + X9 + X10 + X11 + X12 + X13 = 0	Eq. (18)

X8 + X9 + X10 + X11 + X12 + X13 represent products of RFCC Unit.

3.3 Heavy Naphtha Hydrotreater

The feed to heavy naphtha hydrotreater is X3 according to Table (6) and the maximum and minimum capacity Unit are: -

Open Access No. 34 part 2, April 2022, pp. 150-167	P- ISSN: 2220-5381 E- ISSN: 2710-1096

X3 ≥ 14,000	Eq. (20)
-0.9855 X3 + X14 = 0	Eq. (21)

3.4 Catalytic Reformer

The feed to Reformer is **X14** according to the Table (7) and the maximum and minimum capacities of Unit are:

$X14 \le 15,400$	Eq. (22)
$X14 \ge 14,000$	Eq. (23)
-0.0381 X14 + X15 = 0	Eq. (24)
-0.023 X14 + X16 = 0	Eq. (25)
-0.033 X14 + X17 = 0	Eq. (26)
-0.872 X14 + X18 = 0	Eq. (27)
-0.966 X14 + X15 + X16 + X17 + X18 = 0	Eq. (28)

X15 + X16 + X17 + X18 represent products of Reforming Unit.

3.5 Light Naphtha Hydrotreater

The feed to the light naphtha hydrotreater is **X2** according to Table (8). The maximum and minimum capacity Unit is:

$X2 \le 5300$	Eq. (29)
$X2 \ge 4000$	Eq. (30)
-0.027 X2 + X19 = 0	Eq. (31)
-0.9513 X2 + X20 = 0	Eq. (32)
-0.9783 X2 + X19 + X20 = 0	Eq. (33)

X19, X20 represent products of light naphtha hydrotreater Unit.

3.6 Kerosene Hydrotreater

The feed to the kerosene hydrotreater Unit is **X4** according to Table (9). The maximum and minimum capacity Unit are:

$X4 \leq 8,826$	Eq. (34)
-----------------	----------

Journal of Petroleum Research and Studies

Open Access No. 34 part 2, April 2022, pp. 150-167	P- ISSN: 2220-5381 E- ISSN: 2710-1096
X4 ≥ 7,944	Eq. (35)
- 0.03 X4 + X21 =0	Eq. (36)
-0.9515 X4 + X22 = 0	Eq. (37)
-0.9815 X4 + X21 + X22 = 0	Eq. (38)

X21, X22 represent products of Kerosene hydrotreater Unit.

3.7 Gas Oil Hydrotreater

The feed to the gas oil hydrotreater are **X5**, **X6** according to Table (10). The maximum and minimum capacity Unit are:

$X5 + X6 \le 22,527$	Eq. (39)
$X5 + X6 \ge 20,275$	Eq. (40)
-0.005 (X5 + X6) + X23 = 0	Eq. (41)
-0.037 (X5 + X6) + X24 = 0	Eq. (42)
-0.9445 (X5 + X6) + X25 = 0	Eq. (43)
-0.9865 X5 - 0.9865 X6 + X23 + X24 + X25 = 0	Eq. (44)

X23, X24, X25 represent products of gas oil hydrotreater Unit.

3.8 Gasoline Pool

Naphtha stream feeding gasoline pool is the summation of light naphtha comes from naphtha hydrotreater and naphtha from kerosene hydrotreater therefore:

$\mathbf{X26} = \mathbf{X20} + \mathbf{X24}$	Eq.	(45)

X26 = X26R + X26P Eq. (46)	5)
----------------------------	----

X26R represent part of light naphtha to Regular Gasoline.

X26P represent part of light naphtha to Premium Gasoline.

X18 = X18R + X18P Eq. (47)

Note: 83% of produced kerosene is marketed as jet fuel in this calculation according to data available

X18R represent part of Reformate to Regular Gasoline

Journal of Petroleum Research and Studies

Open Access No. 34 part 2, April 2022, pp. 150-167

X18P represent part of Reformate to Premium Gasoline	
$\mathbf{X10} = \mathbf{X10R} + \mathbf{X10P}$	Eq. (48)
X10R represent part of FCC gasoline to Regular Gasoline	
X10P represent part of FCC gasoline to Premium Gasoline	
Let Premium Gasoline product = XP	
Let Regular Gasoline product = XR	
XP = X26P + X18P + X10P	Eq. (49)
XR = X26R + X18R + X10R	Eq. (50)
3.8.1 Octane Number Specification	
$74 \text{ X26P} + 100 \text{ X18P} + 93.5 \text{ X10P} \ge 95 \text{ XP}$	Eq. (51)
$74 \text{ X26R} + 100 \text{ X18R} + 93.5 \text{ X10R} \le 91 \text{ XR}$	Eq. (52)
74 X26R + 100 X18R + 93.5 X10R \ge 87 XR	Eq. (53)
3.8.2 Vapor Pressure Specification	
$68 X26P + 50 X18P + 56 X10P \ge 54 XP$	Eq. (54)
$68 X26R + 50 X18R + 56 X10R \ge 54 XR$	Eq. (55)
X22 = X27 + X28	Eq. (56)

X27 = 0.83 X22Jet FuelEq. (57)X28 = 0.17 X22KeroseneEq. (58)

Up to this point, there are Fifty-Seven (58) constraints and Thirty-Eight (37) variables [5] [6]. Using Lingo Program (LINDO API 13) for maximizing profit with these prices of different products and taking into consideration that the crude oil price is the only one is changeable and the products prices are constant. The programing solution for maximum profit and quantities of 37 variables and 58 constraints [6], [7] are following:

Stream	Quantity (Bbl/Day)	Stream	Quantity (Bbl/Day)
X19	142.4682	X3	15393.00
X21	264.7770	X4	8825.900
X23	112.6310	X5	18022.00
X9	7333.588	X6	4504.200
X15	577.9694	X7	44717.00
X16	348.9054	X10	22371.92
X17	500.6034	X14	15169.80
XP	30161.50	X18	13228.07
XR	11291.580	X20	5019.630
X27	6970.210	X22	8397.844
X28	1427.633	X24	833.4694
X25	21276.00	X26	5853.099
X8	2012.265	X26R	5645.789
X11	5397.342	X26P	207.3104
X12	1341.510	X18R	5645.789
X13	2012.265	X18P	7582.278
X1	100,000	X10R	0.00000
X2	5276.600	X10P	22371.92

Table (12) Shows quantity of each stream according to optimization process

These products quantity will be used in the excel sheet for estimation refinery financial analysis [8],[9].

4. <u>Refinery Financial Analysis</u>

Build an excel sheet financial model of approach for deterministic the most influenced key variable that can limit the boundaries of profits and financial parameters of the refinery. Different scenarios are performed taking into consideration variation of one variable at time and the multi-variables variation at time. The scenario will take the maximum level of risk (minimum value) of each variable to give indication of how would the model behave rather than the maximum value of each variable [10]. Crude oil price and products price, Inflation, Capex, Opex Inflation as well as time construction will be taken into calculation during this analysis.

Table (13) Scenario (1) basis crude price at (65\$), Discount rate (10%) with (0)Opex inflation rate and (0) inflation rate.

Discount	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-2,666	-1,400	-134.08	1,132	2,398
IRR (%)	-	-	-	6%	12%
PI	-	-	-	1.33	1.93
Payback Period (Year)	-	-	-	11.39	8.47

Table (14) Scenario (2) basis crude price at (65\$), Discount rate (10%) with opexinflation rate (10%) and (0) inflation rate.

Discount	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-2,727	-1,461	-195.1	1,071	2,337
IRR (%)	-	-	-	6%	12%
PI	-	-	-	1.30	1.90
Payback Period (Year)	-	-	-	11.61	8.54

Table (15) Scenario (3) basis crude price at (65\$), Discount rate (10%) with opexinflation rate (10%) and (3%) inflation rate.

Discount	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-2,317	-1,405	-494.04	417.7	1,329
IRR (%)	-	-	-	3%	9%
PI	-	-	-	-	1.37
Payback Period (Year)	-	-	-	-	9.42

Table (16) Scenario (4) basis crude price at (65\$), Discount rate (10%) with opexinflation rate (10%) and (5%) inflation rate.

Discount	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-2,109	-1,364	-619.2	125.9	871.1
IRR (%)	-	-	-	1%	7%
PI	-	-	-	-	1.12
Payback Period (Year)	-	-	-	-	10.25

Table (17) Scenario (5) basis crude price at (65\$), Discount rate (0%) with opexinflation rate (0%).

Products Price A (\$/ Bbl)	10%	20%	30%	40%	50%
Crude Oil Price (\$/Bbl)	65	65	65	65	65
NPV (mmUSD)	-2,832	-1,731	-631.4	468.9	1,569
IRR (%)	-	-	-	2.9%	8.5%
PI	-	-	-	1.02	1.54
Payback Period (Year)	-	-	-	15.42	10.05

Table (18) Scenario (6) basis crude price at (65\$), Discount rate (0%) with opexinflation rate (0%).

Products Price (\$/ Bbl)	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-1,566	800.5	3,167	5,533	7,900
IRR (%)	-	4.7%	15.1%	23%	29.6%
PI	-	1.17	2.30	3.43	4.55
Payback Period (Year)	-	12.89	7.59	6.28	5.63

Table (19) Scenario (7) basis crude price at (65\$), Discount rate (10%) with opexinflation rate (10%) and inflation rate (3%).

Products Price A (\$/ Bbl)	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-1,525	178.9	1,883	3,587	5,291
IRR (%)	-	1.3%	11.5%	19.2%	25.7%
PI	-	-	1.64	2.45	3.26
Payback Period (Year)	-	-	8.27	6.54	5.77

Table (20) Scenario (8) basis crude price at (65\$), Discount rate (10%) with opexinflation rate (10%) and inflation rate (5%).

Products Price (\$/ Bbl)	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-1,461	-69.2	1,323	2,716	4,109
IRR (%)	-	-	9.4%	17%	23.3%
PI	-	-	1.33	2.01	2.66
Payback Period (Year)	-	_	8.7	6.72	6

Table (21) Scenario (9) basis crude price at (65\$), Discount rate (10%) with opexinflation rate (50%) and inflation rate (5%).

Products Price (\$/ Bbl)	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-1,605	-212.9	1,179	2,572	3,965
IRR (%)	-	-	8.5%	16.3%	22.7%
PI	-	-	1.27	1.93	2.59
Payback Period (Year)	-	-	9.16	6.82	6.06

Table (22) Scenario (10) basis crude price at (65\$), Discount rate (10%) with opex inflation rate (0%), inflation rate (0%) and products price (+10%).

Crude Oil Price ⁴ (\$/Bbl)	10%	20%	30%	40%	50%
Crude Oil After Increase (\$/Bbl)	71.5	78	84.5	91	97.5
NPV (mmUSD)	-4,098	-4,264	-4,429	-4,595	-4,761
IRR (%)	-	-	-	-	-
PI	-	-	-	-	_
Payback Period (Year)	-	_	-	-	_

Table (23) Scenario (11) basis crude price at (65\$), Discount rate (10%) with opex inflation rate (0%), inflation rate (0%) and products price (-10%).

Crude Oil Price 🔸 (\$/Bbl)	10%	20%	30%	40%	50%
Crude Oil After Increase (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-3,766	-3,601	-3,435	-3,269	-3,103
IRR (%)	-	-	-	-	-
PI	-	-	-	-	-
Payback Period (Year)	_	-	-	-	-

Table (24) Scenario (12) basis crude price at (65\$), Discount rate (10%) with opex inflation rate (0%), inflation rate (0%) and Time of construction (4 years) with capex (2,100 mm USD).

Discount	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-2,666	-1,400	-134.08	1,132	2,398
IRR (%)	-	-	-	6%	12%
PI	-	-	-	1.33	1.93
Payback Period (Year)	-	-	-	11.39	8.47

Table (25) Scenario (13) basis crude price at (65\$), Discount rate (10%) with opex inflation rate (0%), inflation rate (0%) and Time of construction (6 years) with capex (2,100 mm USD).

Discount	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-2,352	-1,306	-259.7	786.6	1,833
IRR (%)	-	-	-	4%	9%
PI	-	-	-	1.1	1.59
Payback Period (Year)	-	-	-	14.6	11.12

Table (26) Scenario (14) basis crude price at (65\$), Discount rate (10%) with opex inflation rate (0%), inflation rate (0%) and Time of construction (4 years) with capex (2,100 mm USD).

Discount	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-2,666	-1,400	-134.08	1,132	2,398
IRR (%)	-	-	-	6%	12%
PI	-	-	-	1.33	1.93
Payback Period (Year)	-	-	-	11.39	8.47

Table (27) Scenario (15) basis crude price at (65\$), Discount rate (10%) with opex inflation rate (0%), inflation rate (0%) and Time of construction (4 years) with capex (3,000 mm USD).

Discount	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-3,641	-2,375	-1,108	157.2	1,423
IRR (%)	-	-	-	0.7%	5.7%
PI	-	-	-	0.84	1.27
Payback Period (Year)	-	-	-	20.74	11.89

Table (28) Scenario (16) basis crude price at (65\$), Discount rate (10%) with opex inflation rate (0%), inflation rate (0%) and Time of construction (6 years) with capex (3,000 mm USD).

Discount	10%	20%	30%	40%	50%
Crude Oil After Discount (\$/Bbl)	58.5	52	45.5	39	32.5
NPV (mmUSD)	-3,222	-2,175	-1,129	82.8	963.5
IRR (%)	-	-	-	0%	4%
PI	-	-	-	0.69	1.04
Payback Period (Year)	-	-	-	28.27	15.34

5. <u>Conclusion</u>

Mathematical model and Optimization process were carried out to construct an invested refinery of capacity 100,000 (Bbl/day) in AL-Nasiriya Governorate. Based on Capex, Opex, Construction time as well as crude oil and products prices, feasibility study (NPV, IRR, PI and Payback Period) was performed to study the profit indicator among different risk scenario. It was noticed that refinery is non-feasible in case of the crude feed price is taken (65\$) and the products prices still constant.

Therefore, oil price was discounted by 10% and the products prices stay constant turns the project to be feasible at (50%) discounted oil price which gives positive financial parameters as can be seen in scenario (1), (2) but no longer viable when adding inflation by (3%) and (5%) as shown in scenario (3) and (4). In contrast, the price of crude oil feed was taken constant (65\$) and the products prices were gradually increased by (10%) till (50%) with constant other parameters gives negative financial parameters means non feasibility as can be seen in scenario (5). Increasing products prices by 10% and discount crude oil price by 10% together makes the project feasible at (25%) for both as shown in scenario (6). Conversely, when inflation was taken into account for OPEX and cost of capital, the project shifted to be feasible at (40%) for both crude oil and products as seen in scenario (7, 8, 9). In the matter of crude oil feed price and products was increased gradually by (10%) and decreased by the same percent. Both scenarios give negative financial parameters as shown in (10) and (11).

Extending life of project from (4) to (6) years and let other parameters constant including CAPEX to study the impact on the financial parameters. It is noticed that the refinery gives negative income compared to previous period of project in scenarios (12), (13). Additionally, the cost of capital was increased from 2,100 million to 3000 million with no change in the other parameters gives negative income as seen in scenario (14) and (15). On the other hand, cost of capital and life of project were changed together makes the project worse income due to decline in the financial parameters as illustrated in scenario (14) and (16).

References

- M. Kancijan, M. Ivanjko, P. Ilak, and S. Krajcar, "An oil refinery production optimization," *IYCE 2015 - Proc. 2015 5th Int. Youth Conf. Energy*, pp. 1–11, 2015, doi: 10.1109/IYCE.2015.7180772.
- [2] M. A. Abul-Hamayel, "Atmospheric residue as feedstock to high-severity fluid catalytic cracking," *Pet. Sci. Technol.*, vol. 20, no. 5–6, pp. 497–506, 2002, doi: 10.1081/LFT-120003574.
- [3] K. W. Holbrook, "Refinery Economics.," *Transp. Res. Rec.*, pp. 6–9, 1984, doi: 10.1016/b978-0-444-52785-1.00018-8.
- [4] J. D. Wright, "PEH : Petroleum Economics," pp. 1–39, 2021.
- [5] S. A. Treese, P. R. Pujadó, and D. S. J. Jones, *Handbook of petroleum processing*, vol. 1. 2015.
- [6] L. E. Schrage, *Optimization Modeling with LINDO*, Sixth Edit., no. 312. Chicago, Illinois: LINDO SYSTEMS INC, 1997.
- S. Jiang, "Optimisation of Diesel and Gasoline Blending Operations," p. 99, 2016,
 [Online].Available:https://www.research.manchester.ac.uk/portal/files/61847556/
 FULL_TEXT.PDF.
- [8] M. E. Mcdill, "C 3: f a i," in *Forest Resorce Management*, pp. 1–26.
- [9] M. Kvaal, "Basic Petroleum Economics," no. August, pp. 1–23, 2004, [Online]. Available:http://www.ccop.or.th/ppm/document/CHWS2/CHWS2DOC10_henrik sen.pdf.
- [10] P. M. Ikpeka and C. Mbagwu, "Petroleum and Coal Article," *Pet. Coal*, vol. 61, no. 1, pp. 32–51, 2018.