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Abstract 

A reservoir is formed due to geologic deposition processes and is not created randomly. However, 

because of subsurface complexity and limited data, there are many uncertainties in reservoir 

characterization. Uncertainties can be reduced by gathering more data and/or employing improved 

technology and scientific methods. Under uncertainty and risk, uncertainty analysis should be 

performed for investigational analyses as well as decision-making. The main focus of uncertainty 

analysis in reservoir characterization and management should be to understand what needs to be 

known and what can be known. Therefore, there are several reservoir parameters’ uncertainties 

and their quantitative influence on cumulative oil production and water cut were studied. 

In this paper, sensitivity analysis and uncertainty quantification were conducted for several 

parameters to study their effect on cumulative oil production. The Monte Carlo method was used 

to carry out the uncertainty quantification. In this study, we examined two methods which are the 

Monte Carlo simulation using a Reservoir simulator (MCRS) and the Monte Carlo simulation 

using a Proxy (MCP) to overcome the issue of the high number of simulation runs requirement 

and to reduce time consumption. 

The results showed that The MCP method is a very useful and powerful tool to conduct the 

uncertainty quantification than the MCRS because the MCP performs the objective function with 

extremely less time-consuming and very accurate and identical results compared to the results of 

the MCRS method. The results of uncertainty quantification for production forecast show there is 

a low risk due to the small gap difference between the P50 and P90. While the sensitivity analysis 

results showed that the oil-water-contact depth is the dominant parameter that affects cumulative 

oil production while porosity is the less influential parameter. 

Keywords: Sensitivity analysis, Uncertainty quantification, Monte Carlo method, Reservoir 

simulator, Proxy, Cumulative oil production. 
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1. Introduction: 

To mimic the reservoir very well, the model parameters must be accurate because some parameters 

are biased from true values (geological, petrophysical, human errors in measurements). Therefore, 

there are several reservoir parameters’ uncertainties and their quantitative influence on cumulative 

oil production and water cut were studied. Therefore, uncertainty quantification is considered an 

essential requirement to assess the impact of risk to help us in decision-making. To optimize 

reserve portfolios and better formulate exploration and exploitation strategies for oil and gas fields, 

more creative and efficient handling of uncertainty is required. 

The structural and petrophysical parameters are mainly focused by uncertainty analysis. 

Uncertainty analysis uses various optimization algorithms to study the influence of each uncertain 

parameter and their interplay influence between parameters themselves to assess the uncertainties 

and their impact on reservoir characterization. Each uncertainty parameters have a special 

probability distribution which is considered more realistic to describe uncertainty in variables of a 

risk analysis. Also, the probability density function (PDF) is used to limit variation of the objective 

prediction to maintain the P10/P90 ratios within the appropriate ranges [1]. A new Bayesian 

approach was used for history matching and uncertainty assessment. The posterior PDF is explored 

with Markov chain Monte Carlo to sample an ensemble of reservoir models that assess the 

uncertainty. The converged proxy functions make a powerful tool with which we can sample as 

many statistics as we wish, without the need for more flow simulations. The possibilities for post-

processing, such as identifying trends, correlations, etc., are tremendous [2]. Mohaghegh (2006) 

[3] used the surrogate reservoir model to represent the reservoir to perform the Monte Carlo 

Simulation for uncertainty analysis of the reservoir because performing Monte Carlo Simulation 

by using a traditional simulator is impractical because of its requirement for a huge number of runs 

( reach to hundreds or thousands of simulation runs) to acquire on meaningful results. 

Novel computationally efficient method for uncertainty quantification with the Metropolis-

Hastings Markov chain Monte Carlo (MH-MCMC) algorithm in which the reservoir simulator is 

replaced by a reliable proxy model. The constructed proxy is the least squares support vector 

regression (LS-SVR) model, a machine learning regression algorithm that uses kernel functions 

and has been found to have a good performance when applied to nonlinear functions [4]. Artificial 

neural network (ANN) is used in the uncertainty quantification and selection of models 

representative because of its ability to quantify the geological uncertainties with high accuracy in 

https://www.sciencedirect.com/topics/engineering/artificial-neural-network
https://www.sciencedirect.com/topics/engineering/artificial-neural-network
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a much shorter time when compared its results with two commonly used methods, namely the 

distance-based clustering techniques and traditional ranking [5]. Camacho et al. analyze the 

uncertainty propagation (that exists in the input parameters) through the model to its output by 

using Polynomial chaos expansions (PCE). This technique illustrates the result of the model as a 

polynomial. 

For convergence consideration, PCE is a fast convergence method than Monte Carlo simulation 

(low-pace convergence which leads to high computational cost). The base of PCE is made up of 

multidimensional orthogonal polynomials, so the approximation of the model response Y is fast. 

Its precision is directly influenced by how efficient the method by which the coefficients are 

estimated. [6].  

From the above-mentioned studies and other studies that didn’t include in this thesis, we notice 

the importance and power of using artificial intelligence in the reservoir development field. 

Artificial intelligence enters different fields in petroleum  

2. Uncertainty: 

Uncertainty and error aren’t synonyms. There is indeed a close relationship between them, but 

they are intrinsically different. Uncertainty describes a state of unknown and the lack of 

acknowledgments of reservoir information due to sparsity and errors. The errors arise from the 

uncertainty in reservoir representation, but the uncertainty does not necessarily carry any error [7].  

The uncertainties of any reservoir may be categorized due to data sparsity, data measurement 

errors, and simulation errors. Data sparsity is a result of the limited data measurement points by 

logging, coring, and well-testing compared with the huge scale of the field. For that, the 

petrophysical properties away from the locations of measurement data are estimated by some 

inferring methods which are represented by analog outcrops and knowledge of how the reservoir 

was formed. While errors in data measurement are related to:  

a. Errors caused by humans or devices when obtaining results from direct measurements (e.g. 

Data obtained during laboratory work from the core plugs). 

b. Errors of indirect measurements called inherent errors (data from wells’ logs). 

c. The dynamic data’s error (e.g. production data) due to the reading blunders [8]. 

While the errors in the simulation runs are (1) errors in input, which relates to errors in data 

collection (e.g. porosity and permeability); (2) physics error is attributed to inappropriate physical 
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system representation (grid system to capture the heterogeneity); and (3) solution errors, which are 

represented by cutting off part of the reservoir as a sector, and suppositions and facilitation of fluid 

flow's mathematical equations. These errors belong to numerical solution errors [9]. These sources 

of uncertainties may exist in any stage of reservoir modeling construction (e.g. petrophysical 

distribution modeling, history matching, and up-scaling) and may behave as deterministic, 

discrete, and stochastic uncertainties [10] [11]. 

When geological and reservoir modeling is prepared and history matching has been achieved, the 

objective function of this study is ready to be conducted. The uncertainty assessment comprises 

three major stages which are reservoir modeling, sensitivity analysis for parameters screening, and 

Monte Carlo simulation [12]. 

3. Monte Carlo Simulation: 

The geostatistical reservoir modeling provides a framework for assessing uncertainty by using 

Monte Carlo sampling. Monte Carlo sampling proceeds by [13]. 

1- Create a model of the domain. 

2- Drawing N realizations from a probabilistic model.  

3- Processing the N realizations through some performance calculations, and  

4- Assembling a histogram of the N responses to rep-count for the various sources of 

uncertainty. 

Probability statistics usually are used to study the uncertainty quantification in the model 

optimization methods. There are three international criteria which are P10 (pessimistic 

probability), P50 (most probable probability), and P90 (optimistic probability). P10 indicates that 

10% of the probability of calculated estimates will be equal to or exceed the P10 estimate while 

P90 is indicating that the 90 % of the probability of calculated estimates is greater than or equal to 

the P90 estimate for that the P 10 and P 90 represent the lowest probability of occurrence for 

simulations results. P 50 is considered the median and highest probability of occurrence because 

the likelihood of being greater than or less than the corresponding reserve is 50% [14] [15]. 

4. Defining the objective function: 

To select the parameters and their probability range that may affect the objective function. In this 

study, the objective function is to study the uncertainty quantification of parameters and its effect 

on the estimation of STOIIP and cumulative oil production.  The parameters that were used are: 
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 Oil-waterer contact (OWC) 

 water saturation (SeedSw) as Seed variable  

 porosity (SeedPHI) as Seed variable 

 net to gross (SeedN/G) as Seed variable 

 permeability (Seedperm) as Seed variable 

 

5. Sensitivity analysis:  

This step aims to illustrate the most influential parameters on the STOIIP for the static model and 

cumulative oil production in the dynamic model. The most influential parameters will be 

transferred to uncertainty quantification while the parameters with negligible effect will be 

ignored. Figure (1) shows the Sensitivity analysis of parameters on STOIIP for the geological 

model. The results illustrate that the oil-water contact’s depth is the most predominant parameter 

influence on the STOIIP then comes net to gross (NTGseed), water saturation (SwSeed), and 

porosity (PHIseed) respectively. As obvious from the figure, all parameters affect STOIIP and 

these parameters will be taken into account in uncertainty analysis. 

 

Fig. (1): Sensitivity analysis of parameters on STOIIP for geological model 
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6. Geological Model Uncertainty Analysis:  

In this step, the probability distribution is used to study the uncertainty quantification of the 

volumetric properties of a reservoir which are represented by pore volume, bulk volume, 

hydrocarbon pore volume (HCPV), and STOIIP. This work created 250 geological models 

(Realization) to capture geological uncertainties. Table (1) and Figure (2) show the uncertainty 

analysis for stank original oil in place for the geological model and estimates the probability of 

P10, P50, and P90.  

Table (1) Uncertainty analysis for STOIIP calculation 

Probability STOIIP MMsm3 

P 10 1987.19 

P 50 2360.53 

P 90 2734.97 

Case 2516.99 

 

 

Fig. (2): Uncertainty analysis for stank original oil in place for the geological model. 

 
7. Dynamic Model Sensitivity and Uncertainty Analysis: 

 In this step, the geological uncertainties’ parameters in a reservoir model are transferred to 

reservoir performance forecasting [16]. The importance of reservoir forecasting is represented by 

its impact on business decisions. In common, the business decision is governed by uncertainty, 

and these two components (uncertainty and business decision) form the risk analysis. 
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In dynamic model uncertainty analysis, new parameters are added to this analysis compared to 

geological model analysis such as permeability, permeability ratio, and rock compressibility. 

Figure (3) illustrates the sensitivity analysis of the reservoir’s parameters on oil production 

cumulative. The figure shows that the OWC depth is also the dominant parameter that affects oil 

production rate and oil cumulative production while the other parameters come after. Porosity will 

be ignored in the uncertainty analysis because of its low efficiency in the cumulative production 

of oil. 

 

Fig. (3): The sensitivity analysis of reservoirs’ parameters on oil production rate and oil 

production cumulative. 

To achieve the uncertainty analysis, 150 simulation runs were conducted. The uncertainty was 

achieved along with the duration from 2014 to 2020 which is the same as the real-time of the field 

in the production then the results were compared with the actual cumulative oil production. Figure 

(4) illustrates the histogram of oil cumulative production and cumulative density function. 
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Fig. (4): The histogram of oil cumulative production and cumulative density function for 

dynamic model uncertainty analysis. 

Table (2) and Figure (5) show the cumulative oil production for P10, P50, and P90 compared with 

the actual cumulative function for the field. The results show that the real case is closer to P50 and 

that indicates the model’s uncertainty is moderate and not biased for optimistic or pessimistic 

results. The uncertainty was compared with the production history because the production history 

represents the actual reservoir representative to know our reservoir model biases for any 

probability. 

Table (2): Comparison of cumulative oil production of the statistical probability of 

dynamic model uncertainty with actual observed data of field. 

Probability Cumulative oil production 

MMsm3 

P 10 105.9 

P 50 111.7 

P 90 115 

Case study 110.5 
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Fig. (5): The cumulative oil production for P10, P50, and P90 comparison with the actual 

cumulative function of the field. 

8. Forecast uncertainty and methods comparison: 

This section will conduct uncertainty quantification for the cumulative oil production for the 

reservoir model. Two parameters are included in this study which are the permeability ratio and 

the oil-water-contact depth due to their high influence on the oil cumulative oil production. The 

uncertainty assessment extended from 2020 to 2030. 

The uncertainty quantification faces the major task of conducting a huge number of simulation 

runs reaches to hundreds to thousands of runs and this sometimes is impractical, especially for 

huge reservoirs due to the extremely time-consuming.  

In this study, we are applying the Monte Carlo simulation on two engines to compare their 

capability and performance. The engines that were used in this dissertation are: 

1- Monte Carlo Simulation Using Reservoir Simulator (MCRS): In this case, the inputs 

selected from the Monte Carlo simulation are run through the simulator to determine the 

uncertainty in the reservoir model.  

2- Monte Carlo Simulation Using Proxy (MCP): Using Monte Carlo simulation, inputs are 

randomly generated from probability distributions to simulate the process of sampling from 

an actual population. These inputs are then fed into the response surface model, which is 
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used to determine the uncertainty in the reservoir model. The proxy model type that is used 

in this goal is the radial basis network. 

The goal of this section is to carry out a comparison between these two methods to overcome the 

issues of high numbers of simulation runs and the time-consuming taking into account the quality 

of performance. The results of the comparison could be illustrated as follows: 

1. The results of the two methods (MCRS and MCP) were identical in Monte Carlo simulation 

for cumulative probability and probability density as shown in the Figures (6 and 7) and 

this is important evidence of the capability of the proxy model to replica the actual reservoir 

model behaviors. Table (3) illustrates the comparison between the two methods in the 

probability of estimation. The error percentages between the two methods don’t exceed 

0.1% and that is very accurate from the proxy model to perform the uncertainty 

quantification. 

2. From Figures (6 and 7), we notice that the P50 is more closer to P90 than to the P10 and 

that means the risk is low due to the small gap between the P50 and P90. 

 

 

Fig. (6): Monte Carlo simulation for cumulative probability and probability density by MCRS 

method. 
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Fig. (7): Monte Carlo simulation for cumulative probability and probability density by MCP 

method. 

Table (3): Probability comparison between MCRS and MCP. 

Probability MCRS method *108 m3 MCP method *108 m3 Error 

P 10 1.60624 1.60688 0.04 % 

P 50 1.64904 1.64934 0.02 % 

P 90 1.66444 1.66307 0.08 % 

 

3. The number of simulation runs is considered an extremely essential point in any objective 

function perform, especially in uncertainty assessment due to the high number of run 

requirements. In the MCRS method, 500 simulation runs are conducted to perform the 

uncertainty quantification while the MCP method requires 15 simulation runs to perform 

the objective function (the number of runs in the MCP depends on the number of uncertain 

parameters). Therefore, the process of uncertainty assessment in the MCP conducted the 

objective function for 2 hours while the MCRS method required 4 days to perform the 

objective function with the same results. Figures (Error! Reference source not found. 

and 9) illustrate the number of simulation runs and time-consuming for each method. 

4. The proxy validation is a very high degree where the coefficients of determination of 

training and validation were 100 % and 95 % respectively. This proxy model could be used 

to perform more experiments with accurate and reliable results in any artificial intelligence 

as shown in Figure (10). 
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Fig. (8): The number of simulation runs and time-consuming for the MCRS method. 

 

 

Fig. (9): The number of simulation runs and time-consuming for the MCP method. 

 

 

Fig. (10): Proxy model validation by cross plot between proxy model vs. simulation model. 
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Figures (Error! Reference source not found. and 12) illustrate the identical between the MCRS 

and MCP methods in performing the uncertainty assessment through the behavior of the 

cumulative oil production. 

The summarization of the comparison between these two methods is that the MCP is a very useful 

and powerful tool to conduct the uncertainty quantification than the MCRS method because the 

MCP performs the objective function with extremely less time-consuming than the MCRS method 

at the same time the results are very accurate and identical with the results of the MCRS method. 

 

Fig. (11): Effect of Geological Uncertainty on Field Cumulative Oil Production by Monte Carlo 

simulation using reservoir simulator. 
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Fig. (12): Effect of Geological Uncertainty on Field Cumulative Oil Production by Monte Carlo 

simulation using Proxy. 

 

5. Conclusions: 

1- The oil-water-contact depth is the dominant parameter that affects cumulative oil 

production while porosity is the less influential parameter. 

2- The results of uncertainty of dynamic model and compared it with the observed data for 

real production time show that the real case is closer to P50 and that indicates the model’s 

uncertainty is moderate and not biased for optimistic or pessimistic results. 

3- The Monte Carlo using Proxy method (MCP) is very useful and powerful tool to conduct 

the uncertainty quantification than the Monte Carlo using Reservoir Simulator method 

(MCRS) because the MCP performs the objective function with extremely less time-

consuming and a very accurate and identical results compared to the results of the MCRS 

method. 

4- The results of uncertainty quantification for production forecast shows there is a low risk 

due to the small gap difference between the P50 and P90. 
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