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Abstract 

Permeability is a crucial petrophysical attribute to be accurately estimated due to its direct 

influence on reservoir characterization, heterogeneity assessment, reservoir simulation, and the 

level of uncertainty in decision-making during field development planning. However, measuring 

permeability often involves expensive core analysis or well test analysis. It is typically not 

feasible to conduct such analysis across an entire reservoir involving cores from all wells. 

Therefore, there is a need to accurately model and predict permeability as a function of routinely 

obtained, lower cost, well logging data. Machine learning algorithms (ML) have been recently 

developed to reliably predict permeability by leveraging well logs data. In this research, an 

efficient tree-based (TB-ML) algorithm incorporating extreme gradient boosting (XGBoost) is 

employed to predict permeability in the Mishrif carbonate reservoir (Iraq) based on facies and 

well logging data. The recorded and interpreted well log variables used as input variables include 

gamma ray, caliper, density, neutron porosity, shallow and deep resistivity, total porosity, 

spontaneous potential, photoelectric factor, and water saturation. Additionally, core-derived 

permeability and porosity data is used to calibrate the ML predictions. The discrete reservoir 

facies are distinguished by applying a k-means clustering algorithm. Subsequently, the TB-ML 

algorithm is developed using the default and fine-tuned hyperparameters with the aid of two 

search algorithms: random search and Bayesian optimization. The permeability predictions are 

evaluated using cross-validation and error quantification metrics, which include the adjusted 

coefficient of determination (R2) and root mean squared error (RMSE). A comparison of 

adjusted-R2 and RMSE for the various TB-ML model configurations developed is compared for 

training and testing subsets to illustrate their permeability prediction performance. These results 

suggest that the method is sufficiently reliable to be generalized for application in both carbonate 

and clastic reservoirs in other oil and gas fields.  

Keywords: Machine learning, reservoir characterization, permeability prediction, XGBoost, 

hyperparameter tuning. 
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     خوارزميات لأساليب التعلم الآلي المعتمدة على (Hyperparameter) تحسين المعاملات الفائقة

(TB-ML)   سنفط كربوني غير متجان مكمنللتنبؤ بالنفاذية في 

 :الخلاصة

النفاذية هي خاصية بترو فيزيائية مهمة يجب احتسابها بدقة وذلك لتأثيرها المباشر على توصيف المكمن، ومحاكاة 

المكامن، ومستوى عدم اليقين في اتخاذ القرار أثناء التخطيط لتطوير الحقل. ومع ذلك، فإن قياس النفاذية يتم إما عن طريق 

وعادةً، هذه الفحوصات لا تكون متاحة لطبقات المكمن بأكملها  .او عمليات فحص الابارفحوصات نماذج اللباب الصخري 

ولا في جميع الابار المحفورة. لذلك، هناك حاجة ملحة لنمذجة النفاذية بدقة والتنبؤ بها كدالة لبيانات تسجيل الآبار. تم 

بالنفاذية من خلال الاستفادة من بيانات سجلات الآبار ( مؤخرًا كطريقة واعدة للتنبؤ MLاستخدام خوارزميات التعلم الآلي )

للتنبؤ بالنفاذية في   XGBoostجنبًا إلى جنب مع السحنات أو الصخارية. في هذا البحث، تم استخدام خوارزمية فعالة وهي 

 ,Gamma Ray, Caliper) مكمن مشرف بالاعتماد على بيانات تسجيل الآبار و السحنات. تتضمن بيانات تسجيل الآبار

Density, Neutron Porosity, Shallow and Deep Resistivity, Total Porosity, Spontaneous 

Potential, Photoelectric Factor, and Water Saturation بالإضافة إلى النفاذية والمسامية من نماذج اللباب )

ً  الصخري. . بعد ذلك، تم k-means clusteringم خوارزمية تم الحصول على السحنات المنفصلة عن طريق استخدا ،ايضا

.  Bayesian Optimizationو  Random Searchتحسين أداء الخوارزمية المستخدمة باستخدام خوارزميتين للبحث: 

تم عمل مقارنة بين بين النماذج الثلاثة  ،. و اخيراً Adjusted R2,, RMSEتم تقييم توزيعات النفاذية المتوقعة بناءً على:

النظر إلى مجموعات التدريب والاختبار لتوضيح دقة نهج التعلم الآلي المستخدم للتنبؤ بالنفاذية. النتائج اظهرت ان هذا ب

النهج دقيق بما يكفي ليتم تعميمه للتطبيق في كل من مكامن العراق سواء كانت كربوناتية أو سيليكاتية في حقول النفط والغاز 

 الأخرى.

 

1. Introduction: 

To maximize recovery and optimize output, reservoir engineers need accurate reservoir 

permeability forecasts. Numerous techniques, such as empirical correlations, analytical models, 

and machine learning algorithms, are extensively applied to predict permeability. [1] used the 

group method of data handling (GMDH) and gene expression programming (GEP) algorithms 

to model permeability based on petrophysical properties. Various studies have combined well 

log and core data to provide reservoir quality and productivity indicators. [2] conducted a 

lithofacies and permeability study comparing the performance of support vector machine 

(SVM), back propagation neural network (BPNN), and general regression neural network 

(GRNN) algorithms. [3] used artificial neural networks (ANN) and XGBoost for permeability 

prediction. However, to achieve optimal performance, it required hyperparameter tuning which 

is critical to achieving accurate facies classification and permeability prediction, [4] applied 

five algorithms with optimization tools including artificial neural networks (ANN), fuzzy 

decision tree (FDT), and least squared support vector machine (LSSVM). 

In this study, an integrated workflow is developed for permeability prediction of all 

uncored intervals of the Mishrif formation, applying various configurations of the tree-based, 

extreme gradient boosting (XGboost) algorithm. The XGBoost hyperparameters of the 

algorithms are tuned with random search and Bayesian optimization algorithms. Three 
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normalization methods were applied to the permeability variable of the studied dataset: log 

transformation, Box-Cox, and normal score transformation. Normalization was conducted to 

transform the target variable of the training subset only into a normal distribution to improve 

the permeability prediction performance of the models. The prediction performance was 

evaluated using the root mean square error (RMSE) and adjusted R2 metrics. The results were 

recorded and compared for each normalization method and hyperparameter optimization 

algorithm applied. 

1.1. Reservoir Description 

The Mishrif Formation is the largest, oil-productive, carbonate reservoir in Iraq. It 

accounts for more than 30% of the country's confirmed oil reserves in 32 different structures. 

The Mishrif carbonates vary in age from Cenomanian-Early Turonian era [5]. The Khasib 

Formation, which is composed of fine-grained marls and gray/green shales, sits on top of the 

Mishrif. In certain places, the Rumaila Formation's marls and limestones underlie the Mishrif. 

Based on petrophysical characteristics derived from log analysis, the Mishrif can be divided into 

five stratigraphic units MA (youngest/uppermost), MB1, MB2.1, MB2.3, and MC1 

(oldest/lowermost). The units MA, MB2.1, and MC1 are responsible for most oil production 

from the Mishrif Formation [6]. Reservoir heterogeneity manifests itself as substantial variations 

in porosity, water saturation, and fluid volumes both vertically and horizontally through the 

stratigraphic units [7]. Figure (1) illustrates the stratigraphic column of Majnoon Field with the 

stratigraphic units of the Mishrif Formation distinguished.  

1.2.  Reservoir depositional environment and sedimentary facies 

Reservoir lithofacies are typically categorized using rock-core data to identify whether or 

not they are capable of producing oil and gas based on measures of fluid saturation, porosity, and 

permeability. Such information is also used to identify barriers and non-productive zones within 

reservoirs [8]. The Mishrif Formation's type section has been characterized using such data, 

revealing that it consists of a heterogeneous sequence of organic detrital limestone, algal beds, 

rudist, and coral-reef limestone, with limonitic freshwater limestone as the capstone [7]. Four 

facies can be distinguished: (1) shallow open marine, (2) shoal/reef, (3) back-shoal/reef, and (4) 

restricted marine. Each of these main lithofacies are comprised of several microfacies, with some 

gradation between then. Figure (2) provides a diagrammatic illustration of the depositional 
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environment and the juxtaposition of its lithofacies based on the interpretation of multiple 

wellbore cores [8]. 

 
Fig. (1): The stratigraphic column of the Majnoon oil field distinguishing the Mishrif 

reservoir units. [9]. 
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 Fig. (2): Diagrammatic illustration of the depositional environments and associated 

lithofacies based on the interpretation of cored sections recovered from the Mishrif 

Formation, [8]. 

1.3. Data Description and Analysis  

The well-log data used in this study was recorded in nine wellbores and compiles gamma 

ray (GR), spontaneous potential (SP), caliper (CALI), deep resistivity (RES DEP), shallow 

resistivity (RES SLW), neutron (NEU), bulk density (DEN), sonic transient time (DT) and 

photoelectric factor (PEF) log curves. Data from computer-processed interpretations (CPI) of 

these data also provide porosity and water saturation data for the studied intervals. In addition, 

the dataset includes laboratory-measured permeability and porosity values from the available 

well cores. The well-log data was processed with a k-means clustering algorithm to classify the 

depth section studied into four lithofacies groups (F1 to F4). Figure (3) shows the visualization 

of the datasets (Well Logs and Core). Tables (1) show a statistical description for the data. 

Table (1):   Statistical summary of the well-log and core data variables in the studied 

dataset.  The dataset is comprised of 399 recorded well log and core data points ranging in 

depth from 2720m to 3030 m.  

feature 
mean std min 25% 50% 75% max 

DT 66.78 6.57 48.51 62.59 65.76 69.75 88.64 

GR 37.40 10.70 19.56 29.12 36.01 44.65 83.70 

NEU 0.10 0.03 0.02 0.07 0.09 0.11 0.22 

DEN 2.49 0.08 2.20 2.44 2.51 2.55 2.67 

PEF 5.10 0.15 4.29 5.04 5.12 5.20 5.45 

RES_DEP 35.76 63.07 5.74 11.84 20.15 33.96 858.78 
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RES_SLW 22.86 35.41 3.76 8.90 13.88 21.91 462.17 

SP 23.01 3.21 14.00 20.77 22.76 25.27 32.38 

PHIT 0.11 0.04 0.02 0.08 0.10 0.13 0.26 

SW 0.37 0.29 0.02 0.16 0.27 0.49 1.00 

CORE_PORE 0.13 0.03 0.06 0.10 0.12 0.15 0.22 

CORE_PERM 
17.57 43.09 0.01 0.23 0.98 8.89 285.50 

 

 
Fig. (3): Visual representation of the available Mishrif reservoir well logs and core data for 

the studied dataset. 
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2. Material and methods 

Figure (4) describes the workflow components involved in predicting permeability for the 

compiled Mishrif reservoir section with different configurations of the tree-based XGBoost 

model. 

 

Fig. (4): Workflow diagram for conducting permeability predictions for the studied dataset 

involving XGBoost hyperparameter optimization and target variable normalization. 

2.1. Data processing and preparation 

Prior to applying the XGBoost prediction model, the quality of the compiled data was 

thoroughly checked for outliers and errors. The raw recorded well logs and the core laboratory 

measurements were subjected to different methods of preprocessing, as described in the 

following subsections. 
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2.1.1. Outlier detection 

An outlying data point is one that has values that do not fall within the main data range 

defined by other data points. The Z-score method is used to determine the number of standard 

deviations a data point deviates from the mean of a normally distributed dataset. A data point is 

considered an outlier if its Z-score is above a certain threshold value, typically greater than 3 

[12]. The Z-score is calculated using Eq. (1): 

𝑍 =  (𝑋 −  𝜇)/𝜎                                            (1) 

Where 𝑋 is a specific data point value, μ is the mean value of the entire dataset, and σ is 

the standard deviation of the entire dataset. 

The Z-score method, with a threshold value of 5.5 was utilized to detect and eliminate 

outliers.  This threshold value was adopted after trial-and-error testing of permeability prediction 

accuracy using different threshold values. Figure (5) distinguishes the data points of the 

compiled Mishrif dataset that are considered as outliers by the Z-score method. 

  

Fig. (5): Identified outlying data points in the compiled Mishrif dataset based on a Z 

-score threshold of 5.5 standard deviations. 
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2.1.2. Data Splitting 

Based on trial-and-error analysis, the data records of the compiled dataset were split 

randomly into two subsets: 75% for XGBoost model training, and 25% for testing the trained 

model. 

2.1.3. Normalization 

Some machine learning algorithms and statistical techniques assume a normal (Gaussian) 

distribution of the target variable being predicted. If this is not the case, a transformation of the 

data can be applied to impose a normal distribution on the target variable distribution [11]. There 

are several statistical tests available for checking whether a variable is normally distributed or 

not. The D’Agostino and Pearson’s test combines skew and kurtosis measurements of a variable 

distribution to provide a normality test. This test calculates the probability (p) of the null 

hypothesis that a sample comes from a normal distribution.  

Three normalization transformations were used:  

● Log Transformation 

�̂� = 𝑙𝑜𝑔10 𝑦       (2) 

● Box-Cox Transformation 

�̂� =  (𝑦𝜆 − 1)/𝜆      (3)  

Where  is a transformation parameter, the value of which can be set to maximize the p value of 

the normality test. 

● Normal score transformation (NST) 

The NST method transforms a dataset to a normal distribution by applying Eq. (4) [12]. 

 

�̂� =  𝐹−1(
𝑟𝑎𝑛𝑘(𝑦)−1/2

𝑛
)     (4) 

Where  is the number of observations (samples), the  component is a function that assigns 

each element in a distribution a corresponding index position number in the sorted 

 list of distribution values, and  represents the cumulative density function  

(CDF) of a Gaussian distribution as expressed in Eq.(5). 

𝐹(𝑥) = ∫
𝑒−𝑡2/2

√2𝜋
𝑑𝑡

𝑥

−𝑖𝑛𝑓
     (5) 
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Each of these transformations is bijective (i.e. both injective (one-to-one) and surjective (onto)), 

Figure (6) displays the unnormalized and normalized permeability distribution using the three 

transformation techniques described. 

 
Fig. (6): Histograms of the permeability distribution for the training subset before and 

after applying normalization, each displaying the p-value of the normality test. The three 

normalization algorithms applied are Log, Box-Cox, and NST. 

 

2.2. Model construction 

2.2.1. Extreme gradient boosting (XGboost) 

[13] developed the XGBoost algorithm, an effective, flexible and fast to execute machine 

learning algorithm for building predictive models. Experimental results show that XGBoost 

outperforms other tree boosting methods on a variety of benchmarks and real-world datasets. 

2.2.2. Cross Validation 

 Cross-validation (CV) is used in this study to evaluate the permeability prediction 

performance of the XGBoost models with different combinations of hyperparameters on the 

training data subset. Such analysis provides a useful estimate of the ability of the trained models 

to generalize to new data and avoid overfitting and selection bias issues [11].  

K-fold CV divides the data into K sets of equal sizes; for a total of K iterations. In the 

first iteration, the model is trained on k-1 folds and tested on the combined remaining data. This 
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process is repeated K times, with a different divided set of data used for training the model each 

iteration, and then test it using the remaining data not used to train the model. The target variable 

prediction performance scores from each of the K iterations are then averaged to obtain a single 

estimate of the model's performance [10].  

2.2.3. Hyperparameters Optimization 

 Two optimization algorithms were implemented to search for the optimum set of 

hyperparameters: 

● Random search 

 Many models are trained and evaluated with cross validation in each iteration of the 

random search algorithm. Each model is built with a random set of hyperparameters that are 

sampled from a predefined parameter space. The hyperparameters of the model configuration 

that generates the best target variable predictions are considered the optimal solution [11]. 

One of the advantages of this algorithm is that it takes significantly less time to execute 

than the grid search algorithm, where the search goes through the entire parameter space more 

systematically. 

● Bayesian Optimization 

 This probabilistic model maps the hyperparameters to a measure of the quality of the 

resulting model. The probabilistic model is then used to guide the search for the best set of 

hyperparameters by sampling candidate hyperparameters from a probability distribution and 

evaluating their prediction performance [11]. 

 A key advantage of Bayesian optimization is that it allows the algorithm to update its 

probability distribution based on the results of each iteration. This approach balances the 

exploration of the available hyperparameter space with a gradually increased focus on the 

exploitation of regions of that space that provide the most effective model. Table (2) displays the 

range of each XGBoost hyperparameters evaluated by the random search and Bayesian 

optimization algorithms. 
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Table (2): XGBoost Hyperparameter ranges explored by the optimization process 

Parameter Range 

learning rate 0.001 - 1 

min child weight 1 - 10 

num parallel tree 1 - 20 

num estimators 50 - 2000 

subsample 0.1 - 1 

max depth 2 - 10 

gamma 0 - 2 

colsample bytree 0.1 - 1 

reg alpha 0 - 1 

reg lambda 0 - 2 

2.3. Model evaluation 

Many models were built, each with its own combination of data preprocessing procedures 

and hyperparameter selection schemes. The predictions generated by each model on the training 

and testing subsets, and the entire dataset were evaluated with the two metrics (RMSE and 

adjusted R2; Table 3). 

Table (3:) Prediction performance metrics used to evaluate permeability predictions of the 

studied dataset 

metric formula Name, Range, and Interpretation 

RMSE √
1

𝑛
∑(𝑦𝑖 − 𝑝𝑖)2

𝑛

𝑖+1

 

Root mean squared error (with dimensions) 

[0, inf]. Small values indicate accurate 

predictions 

Adjusted R2 1 − (1 − 𝑅2)
(𝑛 − 1)

(𝑛 − 𝑘 − 1)
 

Adjusted R-squared modified for the number of 

regressors in the model. less than or equal to R2 

Note to Table 3:  yi is the number of observations, pi is the number of predictions, n is the number of observations, 

and k is the number of independent variables.  

A comparison between the prediction performance of all models was conducted to identify the 

best performing model most able to mitigate overfitting and data selection bias. That involved a 

deep investigation of the most effective XGBoost model configuration and dataset pre-
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processing, considering data quality control processes, normalization, search algorithms, and 

parameter space.  

Table (4) lists the Python program libraries used to conduct this study. 

Table (4):  Programming libraries used in this study  

Libraries  Description 

pandas  Data analysis and manipulation tool. 

numpy A large collection of high-level mathematical functions that operate on 

multi-dimensional arrays. 

matplotlib A comprehensive library for creating static, animated, and interactive 

visualizations 

sklearn Simple and efficient tools for predictive data analysis 

scipy Optimization and data interpolation tools  

hyperopt Distributed Asynchronous Hyper-parameter Optimization 

xgboost Optimized and distributed gradient boosting library. implements 

machine learning algorithms under the Gradient Boosting framework 

3. Results and discussion  

The following subsections describe the permeability prediction results for the studied 

dataset of the three steps in the XGBoost model development. 

3.1. The prediction outcomes of hyperparameter optimization 

 Initially, the XGBoost algorithm was evaluated with default and optimized 

hyperparameters, where optimization was performed using random search and Bayesian 

optimization algorithms. Table (5) compares the permeability prediction results, identifying that 

the optimization procedure employing random search algorithm generated the best results. 

Nonetheless, the performance resulting from this step has not enhanced the prediction 

performance significantly compared with the default model. The optimized XGBoost trained 

model overfits the testing subset in each case.  

 

 



Journal of Petroleum Research and Studies 

 P- ISSN: 2220-5381 

E- ISSN: 2710-1096 

 

Open Access 

Vol. 15, No. 1, March 2025, pp. 43-61     
 
 

56 

Table (5): XGBoost permeability prediction results with default and tuned 

hyperparameters algorithms without normalization and outlier detection.  

Hyperparameter 
Adjusted R2 RMSE 

Train Test Train Test 

Default 1 0.69 0.01 20.64 

Random Search 1 0.73 1.35 19.22 

Bayesian Random 1 0.69 1.14 20.65 

Note to Table 5: An adjusted R2 values of 1 for the training subset indicates perfect predictions, 

but the much lower adjusted R2 values for testing subset are an indication that these models are 

overfitting the dataset. 

3.2. The prediction outcomes of data normalization 

In this step, three normalization methods were applied, resulting in nine models. The 

permeability prediction results reveal that the XGBoost models configured with default 

hyperparameters continued to overfit the dataset. Table (6) compares the permeability prediction 

results, identifying that those models with optimized hyperparameters applied to normalized 

training subsets achieved predictions with reduced overfitting. Nonetheless, the prediction 

performance of this group of models still results in relatively high errors. 

Table (6): XGBoost permeability prediction results applied to training subsets normalized 

with three transformation techniques: log transformation, Box-Cox and NST.  

Hyperparameter Normalization 
Adjusted R2 RMSE 

train test train test 

Default  

Log 1.00 0.61 0.07 23.59 

Box-Cox 1.00 0.60 0.07 23.77 

NST 1.00 0.74 0.07 18.99 

Bayesian Random 

Log 0.76 0.52 13.56 26.38 

Box-Cox 0.75 0.60 13.82 24.03 

NST 0.85 0.61 10.39 23.50 

Random Search Log 0.95 0.67 6.24 21.35 
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Box-Cox 0.95 0.69 6.22 20.73 

NST 0.91 0.72 8.19 19.61 

3.3. The prediction outcomes of outlier detection and removal 

In this step, outlier detection was employed with the z-score method, resulting in twelve 

additional models. The XGBoost model’s permeability prediction performance with the studied 

dataset is further enhanced following the removal of detected outlying data records from the 

training dataset. Random search optimization of hyperparameters and Box-Cox training subset 

normalization outperform all the other model configurations in terms of both prediction 

performance and reducing the model’s overfitting tendencies. Table (7) shows the permeability 

prediction results following the removal of outlying data records removal with different 

normalization and XGBoost optimization techniques applied.  

Table (7): XGBoost permeability prediction results applied to the training datasets 

following the removal of outlying data records 

Hyperparameters Normalization 

Adjusted R2 RMSE 

Train Test Train Test 

Defaults Parameters 

None 1 0.67 0.01 15.07 

Log 1 0.79 0.09 12.01 

Box-Cox 1 0.75 0.1 13.07 

NST 1 0.72 0.12 13.73 

Random Search 

None 1 0.83 0.29 10.69 

Box-Cox 0.93 0.86 6.9 9.78 

Log 0.87 0.69 9.25 14.53 

NST 0.85 0.63 10.01 16.33 

Bayesian 

Optimization 

None 0.85 0.78 10.15 12.12 

Box-Cox 0.88 0.78 9.25 12.24 

Log 0.85 0.83 10.11 10.82 

NST 0.82 0.64 11.07 16.03 

Figure (7) compares the observed and predicted permeability values of the studied dataset 

applying the best performing XGBoost model. 



Journal of Petroleum Research and Studies 

 P- ISSN: 2220-5381 

E- ISSN: 2710-1096 

 

Open Access 

Vol. 15, No. 1, March 2025, pp. 43-61     
 
 

58 

 

Fig. (7): The best XGBoost model, involving random search optimization and Box-Cox 

data normalization after the removal of outlying data records from the training subset. 

Results are displayed for the training and testing subsets, and the entire dataset. 

 

4. Conclusions 

Multiple tree-based machine-learning models using the extreme gradient boosting model 

(XGBoost) are configured and developed to provide reliable and robust permeability predictions 

for the Mishrif carbonate reservoir using well-log data variables calibrated with core data. Based 

on the prediction results obtained, the following conclusion can be drawn: 

1. The permeability distribution of the core and well-log dataset compiled for the Mishrif 

reservoir of the Majnoon oil field is highly asymmetrical and positively skewed.  

2. The XGBoost models applied to this raw dataset are prone to severe overfitting, unless 

the target (permeability) variable in the studied dataset is transformed to a more 

symmetrical distribution. 

3. Comparisons of the twenty-four configured models evaluated reveal that the XGBoost 

model applied to the training subset adjusted with the Box-Cox normalization algorithm, 

and with its hyperparameter tuned using the random search algorithm outperforms other 

models. That model achieves permeability predictions for the studied dataset of RMSE = 
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6.9mD and 9.782mD, and adjusted R2 = 0.9294 and 0.8554, for training and testing 

subsets, respectively.  

4. The methodology proposed in this study should be applicable to other reservoirs which 

display highly skewed permeability distributions. 

Acknowledgment 

The authors would like to thank the Department of Oil and Gas Engineering of Basrah 

University for Oil and Gas for their support to participate in this conference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Journal of Petroleum Research and Studies 

 P- ISSN: 2220-5381 

E- ISSN: 2710-1096 

 

Open Access 

Vol. 15, No. 1, March 2025, pp. 43-61     
 
 

60 

References 

[1] M. Mahdaviara, A. Rostami, and K. Shahbazi, “State-of-the-art modeling permeability 

of the heterogeneous carbonate oil reservoirs using robust computational approaches”, 

Fuel, 268, p. 117389, 2020. https://doi.org/10.1016/j.fuel.2020.117389 

[2] A. Al-Anazi, I. D. Gates, “A support vector machine algorithm to classify lithofacies 

and model permeability in heterogeneous reservoirs”, Engineering Geology, vol. 114, 

no. (3–4), pp. 267–277, 2010. https://doi.org/10.1016/j.enggeo.2010.05.005 

[3] R. Qalandari, R. Zhong, C. Salehi, N. Chand, R. L. Johnson, G. Vazquez, J. Mclean-

Hodgson, and J. Zimmerman, “Estimation of rock permeability scores using machine 

learning methods”, Paper presented at the SPE Asia Pacific Oil & Gas Conference and 

Exhibition, Adelaide, Australia, October 2022. https://doi.org/10.2118/210711-MS 

[4] M. A. Ahmadi, and Z. Chen, “Comparison of machine learning methods for estimating 

permeability and porosity of oil reservoirs via Petro-physical logs”, Petroleum, vol. 5, 

no. 3, pp. 271–284, 2019. https://doi.org/10.1016/j.petlm.2018.06.002 

[5] T. A. Mahdi, A. A. M. Aqrawi, A. D. Horbury, and G. H. Sherwani “Sedimentological 

characterization of the mid-Cretaceous Mishrif Reservoir in southern Mesopotamian 

Basin, Iraq”, GeoArabia, vol. 18, no. 1, pp. 139–174, 2013. 

https://doi.org/10.2113/geoarabia1801139 

[6] W. J. Al-Mudhafar, M. A. Abbas, and D. A. Wood, “Performance evaluation of 

boosting machine learning algorithms for lithofacies classification in heterogeneous 

carbonate reservoirs”, Marine and Petroleum Geology, vol. 145, p. 105886, 2022. 

https://doi.org/10.1016/j.marpetgeo.2022.105886 

[7] L. khudhur Abbas, T. A. Mahdi, “Reservoir units of Mishrif Formation in Majnoon oil 

field, southern Iraq”, Iraqi Journal of Science, vol. 60, no. 12, pp. 2656–2663, 2019. 

https://doi.org/10.24996/ijs.2019.60.12.15 

[8] W. J. Al-Mudhafar, “Integrating machine learning and data analytics for geostatistical 

characterization of Clastic Reservoirs”, Journal of Petroleum Science and Engineering, 

vol. 195, p. 107837, 2020. https://doi.org/10.1016/j.petrol.2020.107837 

[9] M. A. Abbas, and E. M. Al Lawe, “Clustering Analysis and Flow Zone Indicator for 

Electrofacies Characterization in the Upper Shale Member in Luhais Oil Field, Southern 

Iraq”, Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UA, 

2019. https://doi.org/10.2118/197906-MS 

[10] M. Sarmad, “Robust data analysis for factorial experimental designs: Improved methods 

and software”, Durham theses, Durham University, 2006.  

[11] H. Belyadi, and A. Haghighat, “Machine Learning Guide for oil and gas using python”, 

https://doi.org/10.1016/j.fuel.2020.117389
https://doi.org/10.1016/j.enggeo.2010.05.005
https://doi.org/10.2118/210711-MS
https://doi.org/10.1016/j.petlm.2018.06.002
https://doi.org/10.2113/geoarabia1801139
https://doi.org/10.1016/j.marpetgeo.2022.105886
https://doi.org/10.24996/ijs.2019.60.12.15
https://doi.org/10.1016/j.petrol.2020.107837
https://doi.org/10.2118/197906-MS


Journal of Petroleum Research and Studies 

 P- ISSN: 2220-5381 

E- ISSN: 2710-1096 

 

Open Access 

Vol. 15, No. 1, March 2025, pp. 43-61     
 
 

61 

2021. https://doi.org/10.1016/C2019-0-03617-5 

[12] D. C. Howell, “Statistical Methods for Psychology”, Seventh Edition, Wadsworth 

Cengage Learning, Belmont, 2010. 

[13] T. Chen, T. and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, 

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, 2016. https://doi.org/10.1145/2939672.2939785 

[14] W. J. Al-Mudhafar, “Incorporation of bootstrapping and cross-validation for efficient 

multivariate facies and Petrophysical Modeling”, Paper presented at the SPE Low Perm 

Symposium, Denver, Colorado, USA, May 2016. https://doi.org/10.2118/180277-MS 

 

  

https://doi.org/10.1016/C2019-0-03617-5
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.2118/180277-MS

