Study on Viscosity Correlations for Iraqi Crude Oils

Aliaa Kamil AL-Head,Khalida Jameel Waheem Ministry of Oil,PRDC

Abstract:

One of the important properties in identification of reservoir performance is viscosity which is defined as the resistance to internal friction of the molecules of the fluid, and friction created as a result of attraction forces between the fluid molecules which resist the fluid flow and restrict it. It is necessary for running simulation, or(building reservoir model)fluid flow through porous media and pipelines, well testing and design of production equipment.

The factors that affect the fluid viscosity are: -

- Gas Oil Ratio.
- Reservoir Pressure and Temperature.
- API-gravity.

There are empirical relationships for estimating viscosity above, at, and below the bubble point pressure. In this study, a new correlations are suggested by correlating the experimentally PVT data for Iraqi crude oils from North, Middle, and South oil fields. One hundred and eleven laboratory tests were used to formulate these new empirical correlations.

A final correlations (above, at, and below the bubble point) have been established by nonlinear regression technique, and the correlations were tested by statistical error analysis results. Good agreement was shown between the experimental viscosities and calculated viscosities using new correlations.

Introduction

Viscosity is defined as the measure of resistance to fluid flow that is necessary for reservoir studies. A lot of correlations for estimating crude oil viscosity for above, at, and below the bubble point are shown in table (1) as functions, year and geographical locations. These correlations are functions of measurable PVT properties (GOR, oil API gravity, gas gravity, reservoir pressure and temperature.

There are empirical equations for estimating viscosity above, at, and below the bubble point pressure.

Such as:

• The Beggs and Robinson [3,5] (1975) are generally applicable correlation equations for dead, gas- saturated and under saturated oil viscosity for North America.

• Labidi [2,3] (1982) correlation for Libya, Nigeria, and Angola oils to estimate oil viscosity for dead, gas- saturated and under saturated, and these equations are a functions of temperatures, oil gravity, and bubble point pressure.

• Khahn and Marhum[2,3,6](1987) correlations contain equations for estimating oil viscosity at, above and below the bubble point for Saudi Arabian oils; the correlation is a function of gas gravity, relative temperature, and gas oil ratio.

• The Petrosky and Farshad [1](1990) correlations contain equations for estimating oil viscosity above, at and below the bubble point for Gulf of Mexico oils.

• The Kartoatmodjo (1991) correlation as a function of oil gravity, temperature and gas oil ratio for estimating oil viscosity above, at, and below the bubble point for Mediterranean Basin and Africa [1].

In this study, New correlations are suggested by correlating the experimentally PVT data of Iraqi crude oils from North , Middle ,and South oil fields that were obtained for above, at, and below the bubble point pressure.

PVT Data

The PVT analyses of (111) bottom hole fluid sample (experimentally data) for Iraqi crude oils from North, Middle, and south oil fields to obtain the ranges of the data used are shown in table (2).

Viscosity Correlations

Crude oil viscosity can be classified into three regions:

-Oil viscosity at bubble point pressure

- -Oil viscosity above the bubble point pressure
- Oil viscosity below the bubble point pressure (dead oil viscosity)

The viscosities are functions of readily measurable PVT properties as shown below :

 μ - f(Rs , T , γ_g , $\gamma_{o_{\perp}}Pb)$

 μ - Viscosity

Pb - Bubble Point pressure,

Rs - Solution Gas Oil Ratio,

- γ_g Dissolved Gas Gravity (air = 1),
- γ_{o} Stock Tank Oil Gravity (water = 1),
- T Reservoir Temperature

The experimentally data (111) from PVT analyses of different Iraqi oil fields were used to determine viscosities (above, at, and below the bubble point) by using known world empirical equations as shown in the appendix.

The nonlinear regression technique has been used to develop the new viscosity correlations for three regimes as shown in these equations.

• Oil Viscosity Correlation At Bubble Point Pressure :

$$\mu = -0.06203 + 0.9833 \times F + 0.0003668 \times F^2 \dots$$

Where:

$$F = \{0.2001 + 0.8428 \times 10^{(-0.000845R_{S})}\} \times \mu od \{0.43 + 0.5165 \times 10^{(-0.0008 \text{ kR}_{S})}\}$$

• Oil Viscosity Above The Bubble Point Pressure:

 $\mu o = 0.863782 \times (1.00081 \times \mu_{ob} + 0.001127 \times (P - Pb) \times (-0.006517 \times \mu_{ob}^{-1.8148} + 0.038 \times \mu_{ob}^{-1.590}).....(2).$

Where:

Γ

µob :Oil viscosity at bubble point pressure

• Oil viscosity below the bubble point

$$\mu_{od} = 0.6049 \times (16 \times 10^8 \times T^{(-2.8177)} [\log(API)]^{(5.7526 \log(T) - 26.9718)})....(3)$$

Where :

T - is temperature (in °F)

API $\,$ - Gravity of Oil @ 60 $^{\rm o}$ F

Then comparing these correlations by statistical error analysis

Comparison of Correlation by Statistical Analysis

The average percent relative error, average absolute percent relative error, minimum / maximum absolute percent relative error, standard deviation, correlation coefficient and Tan θ have been computed as shown below. The correlations empirical equations (Kartomtmodjo, Petrosky & Farshad, Begg & Robinson, Kahn & Marhuon and Labedi) and new correlations (above ,at, and below the bubble point) with the experimental viscosity are shown in tables (3-5) and figures (1-3).

Statistical Error Analysis	Viscosity above	Viscosity @ Pb	Viscosity of Dead	
Results	Рb		Oil	
Standard Deviation	19.91	19.36	34.24	
Correlation Coefficients(r)	0.957	0.979	0.868	
Tan θ	1.0	1	1	

Conclusions

1 -The non linear regression technique has been used to develop new viscosity correlations for Iraqi crude oil above, at, and below the bubble point pressure.

2 - Comparison the known world empirical equations (Kartomtmodjo, Petrosky & Farshad, Begg & Robinson, Kahn & Marhuon and Labedi) with experimental viscosities and correlation tested by statistical error analysis are shown below:

Statistical Error Analysis	Viscosity above	Viscosity @ Pb	Viscosity of Dead	
Results	Pb		Oil	
Standard Deviation	19.91	19.36	34.24	
Correlation Coefficients(r)	0.957	0.979	0.868	
Tan θ	1.0	1	1	

3- The new correlation has been made by non linear regression technique and tested by statistical error analysis

4 – This study showed that Kartomtmodjocorrelation was more applicable to determine viscosity world for Iraqi oil after this new correlation.

Nomenclature

Pb -Bubble –Point Pressure (psia)	
P -Reservoir Pressure (psia)	
Rs - Solution Gas Oil Ratio (SCF/STB)	
γo - Oil Relative Density (water=1)	
γg - Gas Relative Density (air =1)	
API - Gravity of Oil @ 60 $^{\circ}$ F	
μ_{ob} - Oil Viscosity @ Bubble Point (CP)	
μ_{od} - Dead Oil Viscosity (CP)	
Er -Average Percent Relative Error	
Ei - Percent Relative Error	
AARE - Average Absolute Relative Error	
Emax - Maximum Absolute Relative Error	
Emin -Minimum Absolute Relative Error	
r - Correlation Coefficient	
n - Number of Independent Variables	
n _d - Number of data points	
exp - Experimental	
Ext - Estimated from Correlation	
T - Temperature (in ^o F)	
Θ r - Relative Temperature = (T+459.69)/459.69) (T in ⁶	F)

Statistical Error Analysis Equations

1- Average Percent Relative Error (Er)

$$Er = \frac{1}{n}\Sigma Ei$$

Where Ei =Relative deviation %

 $Ei = \{ (Xest - X \exp) / X \exp \} \times 100$

2- Average Absolute Percent Relative Error (Ea)

$$Ea = \frac{1}{n} \sum |Ei|$$

3- Minimum/Maximum Absolute Relative Error

$$E_{nim} = \min |Ei|$$

 $E_{\max} = \max |Ei|$

4- Standard deviation

$$S = \left[\frac{1}{(n_d - n - 1)}\right] \sum Ei^2$$

5-Correlation Coefficient (r):

$$r = 1 - \left\{ \sum (Xest - X \exp)^2 / \sum (X \exp - Y)^2 \right\}$$

Where

$$Y = \frac{1}{n} \sum X \exp (\frac{1}{n} \exp (\frac{1}{n} \sum X \exp (\frac{1}{n} \exp (\frac{1}{n} \sum X \exp (\frac{1}{n} \exp (\frac{1}{n}$$

References

1. Trevor Bennison, "Prediction of Heavy Oil Viscosity", "AEA Technology plc" Winfrith, Dorchester, Dorset DT2 8HD.

2. S.A.Khan, M.A.AL- Marhoun, SPE No. 15720,1987, "Viscosity Correlation For Saudi Arabian Crude Oils ".

- 3. Ali Danesh, "Department of Petroleum Engineering ", "PVT and Phase Behaviour of Petroleum Reservoir Fluids", Heriot Watt University.
- 4. Thomas C. Frick, Editor-in-chief, R.William Taylor, Associate Editor,1962"Petroleum Production Hand book", Society of Petroleum Engineers of Aime Dallas, Texas.
- 5.Beggs , H.D. , and Robinson , J . R . " Estimating the Viscosity of Crud Oil Systems ," (Sept., 1975) ,J. Pet. Tech. pp. 1140-1141.
- 6. Khan . S. A., M. S. Marhoun , University of Petroleum & Minerals ,(1985) "ViscosityCorrelation for Saudi Crude Oils" .

T-1-1-	(1) 7.	·· ·	1.4		A	ь. т	4.
I able	(1) V ISC O	sity Cori	elations v	with	Geograp	nic L	ocations

Viscosity Correlations	Year	Functions	Geographic Locations
Kartoatmodjo	1991	API Oil Gravity Temperature (°F)	Mediterranean Basin,
		GOR=Total Gas-Oil Ratio (SCF/STB)	Africa
Petrosky & Farshad	1990	API, Temp.(^o F)	Gulf of Mexico
		GOR=Total Gas-Oil Ratio (SCF/STB)	
Beggs & Robinson	1975	Temp.(^o F)	North America
		GOR=Total Gas-Oil Ratio (SCF/STB)	
Kahn & Marhuon	1987	γ_g = Gas Relative	Saudi Arabia
		θ = Relative Temperature ($^{\circ}$ F)	
		GOR =Total Gas-Oil Ratio (SCF/STB)	
Labidi	1982	Temperature (°F) API Oil Gravity	Libya, Nigeria, Angola
		Bubble Point Pressure (Psia)	

Table(2) Range of Bubble Point Pressure, Solution GOR,
and Viscosity @ BP of PVT Data (Experiment)

No. of Points	PVT Property	Minimum	Maximum
111	Bubble Point Pressure (Psia)	415	4253
111	Solution GOR (SCF/STB)	169.012	1452.601
111	Viscosity (CP) @Pb	0.21	273.51
111	Temperature ([°] F)	104	250
111	Stock tank oil gravity, ° API	14.74	37.4
111	Gas Gravity (air =1)	0.6743	1.9687

Table (3)Summary of Statistical Measures for Viscosity Above
Bubble Point Pressure Correlations

Parametters	This Study	Kartomtmodjo	Petrosky & Farshad	Begg& Robinson	Kahn & Marhuon	Labedi
Average Relative Error %	-3.99	4.866	102.653	-28.42	-1.121	326.778
Average Absolute Relative Error %	17.185	18.35	103.731	31.733	63.196	327.6
Minimum Absolute Average Relative Error %	0.151	0.088	1.052	0.228	4.44	45.71
Maximum Absolute Average Relative Error %	34.92	47.675	407.839	78.655	384.383	734.18
Standard Deviation %	19.91	22.629	133.897	37.67	87.18	371.448
Correlation Coefficient	0.957	0.944	0.75	0.323	-2.503	0.276
Tan(ə)	1.0	1.1	1.15	0.39	0.26	4

Table (4) Summary of Statistical Measures for Viscosity at Bubble Point Pressure Correlations

Parametters	This Study (1a)	Kartomtmodjo (2a)	Petrosky & Farshad (3a)	Begg& Robinson (4a)	Kahn & Marhuon (5a)	Labedi (6a)
Average Relative Error %	-3.45	6.17	78.678	59.688	124.152	-326.379
Average Absolute Relative Error %	16.43	17.737	79.136	104.078	124.163	327.146
Minimum Absolute Average Relative Error %	0.046	0.698	0.154	0.193	0.631	0131
Maximum Absolute Average Relative Error %	35.204	45.47	367.85	778.774	629.29	6.987
Standard Deviation %	19.36	21.855	98.94	191.256	162.04	370.575
Correlation Coefficient	0.979	0.934	0.818	-0.267	-3.014	-23.097
Tan(Ə)	1	1.1	1.178	0.428	3.258	4.177

Fig (1)

Comparison of Viscosity(cp) @ Bubble Point by Correlation From This Study,Kartomtmodjo, Petrosky & Farshad Begg& Robinson , Kahn & Marhuon,Labedi

Comparsion of Viscosity(cp) Above Bubble Point by Correlation From This Study,Kartomtmodjo, Petrosky & Farshad Begg& Robinson , Kahn & Marhuon,Labedi

Fig (3)

Comparsion of Viscosity(cp) of Dead Oil &Deviation in Percent of Estimated by Correlation From This Study,Kartomtmodjo

<u>Appendix</u>

<u>A – Viscosity @ Bubble Point Oil Correlations</u>

Kartomtmodjo for Mediterranean Basin, Africa (1991)

 $\mu = -0.06821 + 0.9824 \times F + 0.0004034 \times F^2$

Where

$$F = \{0.2001 + 0.8428 \times 10^{(-0.000845R_{S})}\} \times \mu od\{0.43 + 0.5165 \times 10^{(-0.0008 kR_{S})}\}$$

.

Petrosky & Farshad for Gulf of Mexico (1990)

Where

$$a = 0.1651 + 0.6165 \times 10^{(-0.60866 \times 10^{-4} \text{ xRs})}$$

 $b = 0.5131 + 0.5109 \times 10^{(-1.183 \times 10^{-3} \times R_S)}$

Begg & Robinson for North America (1975)

Where

$$a = 10.715 \times (Rs + 100)^{-0.515}$$

 $b = 5.44 \times (Rs + 150)^{-0.338}$

S.A.Khan, M.A. Al-Marhoun for Saudi Arabia (1987)

$$\mu = \frac{0.09\sqrt{\delta g}}{\sqrt[3]{Rs}\theta r^{4.5}(1-\delta o)^3}....(7a)$$

Labedi for Libya , Nigeria , Angola (1982)

$$\mu_{ob} = \left(10^{2.344 - 0.03542 \text{xAPI}}\right) \times \frac{\mu_{od}}{Pb^{0.426}}$$
(8a)

B - Viscosity Above Bubble Point Oil Correlations

Kartomtmodjo (2b) for Mediterranean Basin, Africa (1991)

(4b).....

 $\mu o = 1.00081 x \mu_{ob} + 0.001127 \times (P - Pb) \times (-0.006517 \times \mu_{ob}^{-1.8148} + 0.038 \times \mu_{ob}^{-1.590})$

Petrosky & Farshad for Gulf of Mexico (1990)

Where

$$a = -1.0146 + 1.3322x \log(\mu_{ob}) - 0.4876x \left[\log(\mu_{ob})\right]^2 - 1.15036x \left[\log(\mu_{ob})\right]^3$$

Begg & Robinson for North America (1975)

$$\mu = \mu_{ob} \left[\frac{P}{Pb} \right]^{X} \dots \dots (6b)$$

$$X = C1P^{C_2} EXP(C_3 + C_4 P)$$

$$C_1 = 2.6 , C_2 = 1.187 , C_3 = -11.513 , C_4 = -8.98 \times 10^{-5}$$
S.A.Khan , M.A. Al-Marhoun for Saudi Arabia (1987)
$$(P/P)^{-0.14} = -25 \times 10^{-4} (P-Pb) \dots (71)$$

Labedi for Libya , Nigeria , Angola (1982)

$$\mu = \mu_{ob} + \left[\frac{10^{-2.488} \times \mu_{od}^{0.9036} \times Pb^{0.6151}}{10^{0.0197 \times API}}\right] \times \left(\frac{P}{Pb} - 1\right).....(8b)$$

<u>C – Viscosity of Dead Oil Correlations</u>

Kartomtmodjo for Mediterranean Basin, Africa (1991)

Petrosky & Farshad for Gulf of Mexico (1990)

Begg& Robinson for North America (1975)

$$\mu_{od} = 10^X - 1....(6c)$$

Where

 $X = 10^{(3.0324 - 0.02023;API)} \times T^{-1.163}$

S.A.Khan , M.A. Al-Marhoun for Saudi Arabia (1987)

$$\mu_b = \mu_{ob} (P/Pb)^{-0.14} e^{-2.5x10^{-4}(P-Pb)} \dots (7c)$$

Labedi for Libya, Nigeria, Angola (1982)

$$\mu_{od} = \frac{10^{9.224}}{API^{4.7013} \times T^{0.6739}} \dots (8c)$$