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Abstract 

The use of phase change materials (PCM) to store latent thermal energy is critical to bridging the 

disparity between energy production and consumption. This paper investigates numerically the 

use of double and quadruple spiral fins, spiral foam fins, and rectangular and cylindrical fins in 

the horizontal position to improve heat transfer in a shell-and-tube heat exchanger and compares 

the different types with the finless design. Comsol Multiphysics (6.0) was used to create a 3D 

model. In this simulation, natural convection was taken into account, and an approximately equal 

amount of phase change material was used in all cases. Water as the heat transfer fluid and 

commercial paraffin (RT-28) as the phase change material were used in this simulation. The 

results show that the melting time was significantly decreased when the spiral fins were used, 

and the heat transfer rate was significantly improved when the spiral foam fins were used. 

Keywords: Phase change materials, Thermal conductivity enhancement, Thermal energy 

storage, Spiral fins, foam spiral fins. 

 

تحقيق رقمي لتعزيز تخزين الطاقة الحرارية الكامنة من خلال استخدام الزعانف الحلزونية المكونة من 

 الألومنيوم

 

 خلاصةلا

 الطاقة إنتاج بين وتالتفا لسد الأهمية بالغ أمرًا الكامنة الحرارية الطاقة لتخزين( PCMمتغيرة الطور ) مواد استخدام يعد

ذات  لحلزونيةا والزعانف والرباعية، المزدوجة الحلزونية الزعانف استخدام في عدديًا البحث هذا يستقصي. واستهلاكها

 غلاف ذو يحرار مبادل في الحرارة نقل لتحسين الأفقي الوضع في والاسطوانية المستطيلة والزعانف ،المسامية الهشة

 نموذج شاءنلأComsol Multiphysics (6.0) م استخدا تم. زعانف بدون التصميم مع المختلفة الأنواع ويقارن وأنبوب،

 غيرمت مادة من تقريبًا ةمتساوي كمية استخدام و الاعتبار، في الطبيعي الحراري الحمل أخذ تم المحاكاة، هذه في. الأبعاد ثلاثي

ادة متغيرة الطور في ( كمRT-28التجاري ) البارافينحرارة وللقل اام الماء كسائل نتم استخدحيث  .الحالات جميع في الطور

 نقل معدل حسنت كما الحلزونية، الزعانف استخدام عند ملحوظ بشكل انخفض الذوبان زمن أن النتائج أظهرتة. هذه المحاكا

 ذات المسامية الهشة. الحلزونية الزعانف استخدام عند بشكل كبير جدا الحرارة
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1. Introduction 

With the continuous advancements in technology and the ongoing development of companies 

worldwide, there has been a significant increase in energy consumption. This surge in demand 

has been a cause for worry among scientists, who are now focused on devising innovative 

approaches to address this pressing dilemma. The energy crisis has been triggered by the 

depletion of natural resources, the increasing demand for energy among countries, and recent 

political disputes in the area. Efficient energy storage is a crucial aspect of addressing the 

energy issue and may significantly contribute to meeting energy demands. In light of this 

matter, it is essential to devise strategies for improving the quality and efficiency of latent heat 

thermal storage systems [1]. The enhancement of performance in latent heat energy storage 

systems has garnered significant attention in the academic literature. Numerous researchers 

have explored various methods to expedite the phase change process and improve the quality 

of energy storage. This is done with the aim of effectively managing energy resources. 

Researchers have used several methodologies to optimise the effectiveness of latent heat 

storage systems. The aforementioned techniques include the incorporation of nanoadditives 

into the phase change material (PCM) [2], incorporation of porous media into phase change 

material (PCM) has been explored in previous studies [3–7]. Additionally, the use of several 

cascaded PCMs has been investigated in device configurations [8, 9]. Furthermore, alterations 

to the form and geometrical properties of the storage unit [10–13] Nevertheless, the 

predominant approach to boosting the performance of PCM units is the use of highly 

conductive fins, which effectively promote heat transmission [14–22]. Various forms of fins 

have been used in scholarly literature, including a range of factors that have been fine-tuned to 

get the most optimal configuration for enhancing heat transfer in storage systems. 

In a recent work, [23] used an innovative fin design to improve the solidification process 

inside a hexagonal storage unit. The fins are composed of triangular fins with varying 

configurations. A significant improvement in the solidification process of phase change 

material (PCM) was seen by the modification of geometrical parameters and arrangements of 

the fins, as stated by the researchers.  

This study examines the impact of spiral fins, foamed spiral fins, rectangular fins, and 

cylindrical fins on the phase change process of PCM. The performance of these different fin 

configurations is analyzed and compared. 
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2. Numerical Modelling 

The existing concept comprises a storage system enclosed within a tube casing, wherein the 

phase change material (PCM) is filled from the side of the casing. Simultaneously, water flows 

through a tube with a consistently maintained temperature. The wall that is in direct contact 

with the surrounding environment has been fully insulated. The inner tube walls functions as a 

solid medium for heat transmission during the melting process, facilitating the passage of heat 

from the liquid to the phase change material (PCM). Various types of fins were affixed to the 

solid wall in direct contact with the phase change material (PCM). These fins included double 

and quadruple spiral fins composed of aluminum and aluminum foam, as well as rectangular 

and cylindrical fins. A comparison was conducted between these configurations and a heat 

exchanger lacking fins. The fins have been intended to occupy a roughly identical volume. 

Consequently, the quantity of phase change material (PCM) employed within the shell's side is 

roughly equivalent across all instances. The primary aim of this study is to determine the ideal 

configuration for the fin design and investigate the influence of fin shape on the melting 

process of the phase change material (PCM). The schematic diagram of all designs employed 

is seen in Table (1). 

Table (1): The models used for simulations 

NO. Heat exchanger                                  Fins  / Tube 

Without 

  

spiral fins 

  

rectangular 

fins 

  

cylindrical 

fins 
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Double 

spiral fins 

  

Spiral foam 

fins 

  

Double 

Spiral foam 

fins 

  

 

In this simulation, the phase change material employed was commercial paraffin, while water 

was used as the heat transfer fluid. Table (2) presents the physical characteristics of paraffin 

RT-28. 

Table (2): Thermophysical properties of paraffin wax (RT-28) 

Property Value 

Thermal Conductivity of PCM solid 0.28 W/(m·K) 

Thermal Conductivity of PCM liquid 0.17 W/(m·K) 

Heat Capacity of PCM solid 1850 J/(kg·K) 

Heat Capacity of PCM liquid 2050 J/(kg·K) 

Density of PCM solid 860 kg/m³ 

Density of PCM liquid 820 kg/m³ 

Melting Temperature 301.15 K 

Temperature difference 8 

Latent heat of fusion 150000 J/kg 

Dynamic viscosity 0.032 kg/(m·s) 

Coefficient of thermal expansion 0.000385[1/K] 

2.1. Governing Equations: 

It has been assumed that the PCM is Newtonian and incompressible and that its physical 

characteristics vary very little across the operational temperature range. In this work, the 

enthalpy-porosity approach has been used to mimic the phase-change process. In this method, 

the porosity of a given cell is determined by its volume fraction. It has a porosity of 0, which is 

considered solid, and a porosity of 1, which is considered liquid. The equation for determining 

the PCM volume fraction is as follows: 
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𝛼 =  

{
 

 
0                                                𝑖𝑓 𝑇 < 𝑇𝑠

𝑇 − 𝑇𝑠
𝑇𝑙 − 𝑇𝑠

                                       𝑖𝑓 𝑇𝑠 < 𝑇 < 𝑇𝑙

1                                                 𝑖𝑓 𝑇 > 𝑇𝑙

                                        (1)   

As in porous media, a porosity of 0 corresponds to a large pressure loss in that cell, which is 

indicative of the presence of solid material in that cell, whereas a porosity of 1 produces no 

pressure loss in that cell, indicating that the cell is filled with liquid PCM. Porosity between 1 

and 0 is considered the transition zone between one state and another. The simulation of phase 

change is calculated by adding a term to the equation of momentum operating as the source 

term according to the volume fraction of melted PCM in each cell. The following equation is 

used to compute the source term: 

𝑆𝐷 =
(1 − 𝛼)2

𝛼3 + 𝜀
 𝑉𝐴𝑚𝑢𝑠ℎ                                                                                        (2) 

In the above equation, Amushy is a constant parameter that dictates how quickly the velocity 

reaches zero or one and the PCM transforms into a solid or liquid state. According to previous 

studies in the scientific literature, a value of 105 for the mushy constant parameter can yield 

the finest results, whereas higher values may result in undesired defects [25], [26]. In the 

above equation, volume fraction equal to zero (α = 0) is associated with the solid state, which 

returns a large amount of the source term that completely dampens the velocity of PCM, and 

volume fraction equal to one (α = 1) is associated with liquid PCM and eliminates the source 

term as if there were no barrier in the path of the liquid PCM. Add the source term from 

Equation (2) to the momentum equation. The parameter 𝜀 in the denominator of Equation (2) 

is a negligible constant to prevent a denominator of zero. For calculating the motion of PCM, 

which is assumed to be a Newtonian, incompressible fluid with constant properties and 

negligible volume change, the following equations apply: 

Continuity equation: 

𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝑉) = 0                                                                                                  (3) 

Momentum equation: 

𝜕(𝜌𝑉)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑉𝑉) =  𝜇𝛻2𝑉 − 𝛻𝑃 + 𝑆𝑢                                                          (4) 

Where:       Su = SD + Sg                                                                                                                       (5) 



Journal of Petroleum Research and Studies 

 P- ISSN: 2220-5381 

E- ISSN: 2710-1096 

 

Open Access 

Vol. 15, No. 3, September 2025, pp. 186-200      
 
 

191 

And            𝑆𝑔 = 𝜌
𝑟𝑒𝑓
𝑔𝛽(𝑇 − 𝑇𝑟𝑒𝑓)                                                                                                   (6)     

Also         SD =
(1−α)2

α3+ε
 VAmush                                                                                               (7) 

Energy equation: 

∂

∂t
(ρH) + ∇ ∙ (ρVH) = ∇ ∙ (K∇T)                                                                       (8) 

The total enthalpy, H, is defined in Equation (8) as the sum of the sensible energy and the 

latent energy. 

H = HSE + HLh                                                                                                       (9) 

HSE = Href + ∫ cp

T

Tref

dT                                                                                           (10) 

HLh = αLm                                                                                                                 (11) 

In this study, buoyancy force was determined by integrating the momentum equation with a 

source component, as the Boussinesq approximation states that the influence of buoyancy-

driven forces owing to gravity and temperature change may be determined by doing so. The 

Boussinesq approximation's source term has been added as 𝑆𝑔 

The fluid inside the tube is an incompressible Newtonian fluid with constant thermo-physical 

parameters, and the following equations are employed to calculate its motion: 

Continuity equation: 

∂ρf
∂t
+ ∇ ⋅ (ρfV) = 0                                                                                                  (12) 

Momentum equation: 

ρf
∂V

∂t
+ ρfV(∇. V) =  μf∇

2V − ∇P                                                                         (13) 

Energy equation: 

ρfCPf
∂T

∂t
+ ρfCPfV. ∇T = ∇ ∙ (Kf∇T)                                                                    (14) 

2.2. Geometry, initial and boundary conditions: 

In this numerical study, COMSOL 6.0 was used, where 3D geometry was selected. The 

following are the primary and boundary terms. 
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1- Initial Conditions 

When time is zero, water and PCM temperatures are both  𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙. 

2- Boundary Conditions 

The external surface of the inner tube. 𝑟 =  𝑟𝑖 ,𝑈 = 𝑉 = 𝑊 = 0 and 

  𝑇 = 𝑇𝑐𝑜𝑙𝑑  𝑜𝑟  𝑇 =  𝑇ℎ𝑜𝑡. 

The external surface for the outer tube. 𝑟 =  𝑟𝑜 , 𝑈 = 𝑉 = 𝑊 = 0 and   
𝜕𝑇

𝜕𝑟
= 0 . 

At = 𝑟𝑖  𝑎𝑛𝑑 0 ≤ 𝜃 ≤ 2𝜋 , 𝑈 = 𝑉 = 𝑊 = 0, 𝑇 = 𝑇𝑊 = 𝑇𝑐𝑜𝑙𝑑 𝑜𝑟 𝑇ℎ𝑜𝑡 

At 𝑟 = 𝑟𝑜  𝑎𝑛𝑑 0 ≤ 𝜃 ≤ 2𝜋, 𝑈 = 𝑉 = 𝑊 = 0 , 
𝜕𝑇

𝜕𝑟
= 0 

Where: 

The initial temperature of the system is 298.15 K. 

The system is thermally insulated. 

The initial velocity of the heat transfer fluid is 0 m/s. 

conditions, non-slip on pipe surfaces. 

"No viscous stress" 

A fixed and variable thermal surface was used. 

2.3. Validation: 

A study investigated the efficiency of a copper shell and tube latent heat storage unit (LTESU) 

with three longitudinal fins at varying angles [24]. The heat transfer fluid was water, and the 

shell was made of steel. The inner surface of the tube remained constant due to a minimal 

temperature change. The study considered factors like melting percentage, average 

temperature, and LTESU performance improvement. The convective portion of the momentum 

and energy equation was solved numerically using the Ansys Fluent 19.0 platform and a third-

order MUSCL technique. The results validated the numerical technique, showing good 

agreement between computational and experimental results. 



Journal of Petroleum Research and Studies 

 P- ISSN: 2220-5381 

E- ISSN: 2710-1096 

 

Open Access 

Vol. 15, No. 3, September 2025, pp. 186-200      
 
 

193 

 

Fig. (1): Average temperature for Case 1 

3. Results and Discussion 

The use of fins is one of the most common ways to improve thermal performance. In order to 

compare the performance of the spiral and spiral foam fins with the traditional rectangular and 

cylindrical fin shapes, fins of approximately equal sizes were used in all cases, as in Figure (2). 

 

 

Fig. (2): PCM volume used vs. fins volume 
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Fig. (3): Complete melting time for each case 
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(b)Fraction of liquid phase (1) 

 

 

(c) Convective heat flux magnitude (W/m^2) 
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(d) Conductive heat flux magnitude(W/m^2) 

 

Fig. (4): Compare performance for all cases 
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melts. 
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is designed to maintain heat conduction and activate natural convection. 

Figures (4), (5), and the Figure (3) show that the best thermal performance was achieved with 
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Fig. (5): Contours of temperature 
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4. Conclusions 

In this study, the effect of different spiral fins on the melting of PCM inside the LHTESS tube 

casing was measured and compared to the effects of rectangular and cylindrical fins. The study 

included seven simulated and compared cases. The thermal porosity method was used to 

simulate the phase. A constant convective flow of the heat transfer fluid was used. The fins are 

set to have an equal size within the heat exchanger in all cases to make it possible for them to 

be compared. The data were evaluated in terms of fractional solubility evolution, total 

solubility time, and temperature evolution within the sphere. 
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