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Abstract

Sand production is one of the major challenges in the oil and gas industry, so comprehensive
geomechanical analysis is necessary to mitigate sand production in mature fields. The absence
of crucial well logs is an essential challenge in the oil and gas industry, necessitating geologists
and engineers to rely on empirical equations to predict the absence of log intervals.

A comprehensive study was carried out on geomechanical modeling using data logs from
two wells located in the Nahr Umr formation in Southern Irag. Furthermore, the geomechanical
parameters used by the predictive model were verified through caliper measurements. A
machine learning technique was employed to predict the absence of acoustic log in Well-5
instead of using empirical equations. Additionally, two sand management models were
developed and compared - one using the empirical Gardner equation and the other employing
machine learning techniques.

The sand management model based on the Gardner equation predicted the production of
sand from the beginning. However, it did not match the actual production data observed in real
life. On the other hand, the machine learning-based model indicated no probability of sand
generation, which aligned with the observed production data. The findings of this study
demonstrate the advantages of using machine learning over traditional empirical equations for
geomechanical studies in the particular area under study. Also, these findings suggest that
machine-learning techniques might be applied to more basins in southern Iraq. The current
research improves our understanding of the impact of machine learning on sand management
as well as geomechanical characterization. This study has the potential to enhance procedures
for making decisions in the petroleum and natural gas industries and contribute valuable
knowledge to improved ways of handling sand production problems.
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1. Introduction

Geomechanics has become a crucial and vital part of all field development strategies [1]. This
approach is applied to all stages of the petroleum extraction procedure, starting from the initial
exploration phase and extending through production and even beyond field abandonment.
Geomechanics has various applications in the oil and gas field, including forecasting in situ
stresses, estimating the pressure in the pores, determining the properties of the formations,
evaluating the performance of drilling and production, optimizing the stability and trajectory
of the wellbore, and predicting and controlling the production of sand [2, 3]. Understanding
the geomechanical properties of reservoirs is crucial for maintaining the stability of wellbores,
determining the direction of perforations, and devising effective strategies for stimulation and
completion. All of these factors have a significant impact on reservoir production [1, 4].
Insufficient prediction of geomechanical behavior before production operations can lead to
sand production issues [5]. Therefore, it is vital to develop a mathematical model or conduct
empirical studies to estimate geomechanical parameters to ensure efficient and successful

production operations in oil and gas fields.
75



Journal of Petroleum Research and Studies

Open Access P P- ISSN: 2220-5381
Vol. 15, No. 1, March 2025, pp. 74-93 JPERS E- ISSN: 2710-1096

Controlling sand during the production phase is a major challenge for oil companies. Many
wells face sand-related issues that affect production planning and result in higher maintenance
costs. Sand production can happen when loose grains in the formation are released or when
rocks break due to activities like drilling, perforation, or hydrocarbon production [6, 7]. The
oil and gas industry is greatly concerned about sand production as unconsolidated sediments
and high production rates can cause sand to be produced, leading to well blockages. This can
result in decreased productivity, damage to equipment, both downhole equipment and surface
facilities, the potential of the formation collapsing, and the potential of pipelines becoming
plugged. Therefore, it is a critical problem that requires careful consideration and management
[8, 9].

Accurate and reliable data on the stress state, mechanical properties of rocks, and
measurements of reservoir and rock are crucial for conducting geomechanical studies on sand
production. Well logs are commonly used to evaluate the in-situ conditions in a reservoir, but
it is important to note that their data may not always be entirely accurate. Such variations can
affect the accuracy of calculated geomechanical parameters and lead to incorrect
interpretations [1, 10]. Many geomechanical studies employ empirical equations to calculate
the mechanical characteristics of rocks. Geomechanical research globally depends on empirical
equations to determine geomechanical parameters, which may be successful in specific fields
but not everywhere [11].

Applying machine learning (ML) or artificial intelligence (Al) techniques for problem-
solving has shown cost-effectiveness, time efficiency, and success [12-16]. Sand production
represents another challenge to well completion engineers who work on the development of
sandstone reservoirs [17-19]. Petroleum engineers and earth scientists have employed machine
learning algorithms to analyze well logs and other characteristics, leading to an enhanced
knowledge of geomechanics [20-23].

This study aims to conduct a thorough analysis of the geomechanical properties and sand
management of the Nahr Umr formation in southern Irag. Two wells have been utilized in the
present study. The first one provides all the necessary information, but the other, namely Well-
5, is missing the sonic log, a crucial characteristic. The offset well data for well-4 was
implemented to estimate the sonic log for well-4, and a sanding model analysis was conducted
using machine learning and empirical equations. Two methodologies will be utilized, and the

outcomes will be analyzed to evaluate their impact on the final sand model. The application of
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machine learning will be used to improve control over reservoir sand production in the studied

formation.

2. Material and Methods
2.1. Databases

During the purpose of this study, two wells were used. They were drilling in the Nahr Umr
formation of southern Iraq and were given the names Well-4 and Well-5. As can be seen in
Figure (1), Well 4 comes with a comprehensive collection of wireline logs, which include sonic
(us/ft), gamma ray (API), density (g/cm3), neutron porosity (v/v), and caliper (in). For the
purpose of calculating the entire geomechanical parameters, which include the rock parameters
for strength and the mechanical earth model, the full well logs set is applied. The Nahr Umr

was divided into four zones based on the interpretation of the wells, as well as the core sample.

2.2. In-situ stresses (Far Field Stresses)

Far-field stresses in the Earth are characterized by three principal stresses that are mutually
perpendicular to each other. One of the principal stresses, known as the overburden stress (Sv),
acts perpendicular to the Earth's surface and is exerted by the overlying rocks. The other two
principal stresses are horizontally applied. The horizontal stresses are referred to as the
maximum horizontal stress (SHmax) and the minimum horizontal stress (Shmin) as displayed
in [24, 25]. We utilised the calliper data from well-4 to determine the direction of horizontal
strains.

Vertical stress (Sv) may be determined by vertically integrating the bulk density of rock
derived from wirline logging data. The upper interval is usually not logged in oil wells since the
reservoir portion is the main focus. The densities of the shallowest depths must thus be linearly
extrapolated to the surface to determine the density values at shallow depths:

pexr = PucL + Ao(TVD — AG — WD)" 1)

Sv=J; Pogen 2)
Where: Sv represents vertical stress in psi, D is the real vertical depth in feet, p(p)is the bulk
density at depth D in gm/cc, g is the gravitational constant, and pext is the estimated density
for shallower depths using linear extrapolation in gm/cc. pmeL represents the density at the sea
bottom in grammes per cubic centimeter. TVD stands for true vertical depth and is measured in
meters. AG and WD represent the distance in meters between the earth's surface and the air gap
and water levels, respectively. Ao and n are the parameters used for fitting.
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Fig. (1): Wireline Ilogs of Well-4.

The maximum and lowest horizontal stress in the Nahr Umr formation may be determined

by taking into account the tectonic stress [26, 27]:

_ PRsta 1-2PRstq Esta EstaPRsta
Shmin ~ 1-PR Sv + _PR aPP + 1—PR? Emax + _PR2 Emin (3)
1 sta 1 sta sta 1 sta
PR ta 1_2PRsta Esta EstaPRsta
S =_—a g ——gp, + Epin + 2222 F 4
Hmax 1-PRgtq v 1-PRgtq P 1_PRszta min 1_PR§ta max ( )

The variables are defined as follows: "Spmin" and "Shmax" denote the lowest and highest
horizontal stresses, "PR™ represents the static Poisson's ratio, "Sy" stands for the overburden

stress, "a" indicates the Biot's coefficient, "Esta" denotes the static Young's modulus, & "Pp"
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refers to the pore pressure. "Emin" and "Emax" represent the lowest and highest primary

horizontal strains.

2.3. Formation Pore Pressure
Pore pressure is the pressure exerted on the walls of pores by fluids in the formation [28]. The
normal pressure is often calculated linearly utilizing the pressure at sea floor (Ppo), and a

constant gradient (k) at the total vertical depth (TVD) [29]:
Ppn:Pp()“‘/é TVD (5)

Abnormal pore pressure (Pp) of shale intervals is calculated by using slowness Eaton

equation as showing respectively [29-31].

DTCr x

Pp = Sv — (SU — Pyorm) PTC. (6)

Where: DTc stands for compressional transit time (us/ft) in shale at Pp,, whereas DTcn
represents the compressional transient time (us/ft) in shale obtained from the log. X is defined

by the trend line for standard compaction, which becomes known at 3.

2.4. Mechanical properties and sand production model inputs.

In this study, 1D MEM characterization developed by Schlumberger Tech-log Software was
used to estimate, predict, and quantify wellbore instability and sand production model of the
Nahr Umr formation. To construct the mechanical earth model (MEM) many parameters are
needed, such as Biot coefficient, Young’s modulus, UCS, and Poisson’s ratio. We utilized the
methodologies proposed by (Chang et al., 2006, Zhang, 2019, Radwan and Sen, 2021) [5, 29,

32] to determine the critical geomechanical parameters as follows:

Estq = 0.032 % Egp3? (7
PRgtq = PRgyn * Pr multiplier (8)
To = K * UCS ()
UCS =4.242*Eg, (10)

Where: Esta, PRsta, and PRayn are the static Young's modulus in Mpsi, static Poisson ratio, and
dynamic Poisson ratio (unitless) respectively. UCS output in units of psi. To units according to

UCS units. K in Eq. (9) is a lithology factor had default value = 0.1.
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Perforation data from the wells under study was input into the sand management model. With a
maximum perforation diameter of 0.3 inch and a 60-degree phasing orientation, the perforations
are able to be observed in all directions. Based on the data collected from logs and the caliper,
we can see that the Maximum Horizontal Stress is 45 degrees. We used a sand particle size of

160 micrometers and a stress change ratio of 0.5.

2.5. Neural network

A neural network works on the assumption of a nonlinear relationship among logarithmic
characteristics. The definition is determined by the number of layers, connection weights, and
neurons in each layer. ML techniques are widely applied to solve numerous problems in
geoscience and subsurface engineering [21, 33]. The study used Schlumberger’s K.mod
(probabilistic neural network pattern recognition) to forecast, understand, and simulate
reservoir parameters, especially the sonic log, which impact sand management and overall
geomechanical properties. The primary goal of using K.mod is to develop a network model that
can forecast the values of a specified logging curve based on various types of input log data.
K.mod is a Multilayer Perceptron (MLP) neural network. The system is composed a layer for
input, hidden pattern layer, accumulation layer, output layer, and linking loops as seen in Figure
(2) very node represents an attribute, and each connection indicates the conditional relationship
(probability) among a certain attribute and training datasets. The Nahr Umr formation's
compressional slowness was predicted using gamma-ray, density, and neutron porosity as input

parameters.
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Fig. (2): Displays the log data utilized for machine learning to predict sonic log.

3. Results and Discussion

3.1. Wellbore stability model for Nahr Umr

We verified the reliability of our rock strength, poro-elastic, and earth models for Well-4
by conducting a comprehensive wellbore stability study on the reservoir section. The poro-
elastic horizontal strain approach is used to determine the lowest and highest horizontal stress
values by applying tectonic strain component values that are 0.0014 and 0.00175, respectively.
The failure criterion was chosen for this research by using Modified Lade failure criteria, as it
gave a complete match to the caliper log as illustrated in Figure (3). Therefore, this criterion is
appropriate and gives consistency that the equations used to calculate the rock properties were

correct.
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Fig. (3): Displays the wellbore stability results for well-4.

3.2. Sand management of the Well-4

The sand production of the Nahr Umr formation was constructed for Well-4 by using the
outputs of the Mechanical Earth Model and using them as inputs in the sanding model. The sand
management research results for well-4 indicated no expected sand failure over the whole
formation section. Various CDDP (critical drawdown pressures) were utilized, including 0%,
15%, 25%, 35%, and 45%, which were graphed in Figure (4). Perforations were done in this
well from depth 2529 to 2545, which is within zone C. Through the results of the sand model,

it became clear we can produce with bottom hole following pressure reaching zero without
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producing sand. The sand management assessment for the Nahr Umr well indicated that sand
generation is not possible based on the present parameters, as shown by the green flag up to

zero pore pressure in the single depth analysis (Figure 5).
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4 in the Nahr Umr Formation at Depletion Rates of 0%, 15%, 25%, 35% and 45%.
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Fig. (5): Single depth sand management results for well-4.

3.3. Neural network application

To clarify the importance of using ML in the sand model, where well-5 was used to be
compared with well-4. One significant challenge the researcher faced while investigating well-
5 was not having an acoustic log (sonic log). The sonic log is utilized for the complete
mechanical earth model (MEM) and for determining rock strength. A neural network technique
was used to forecast the sonic log by studying data from adjacent wells to decrease uncertainty
and manage risk. Three different kinds of logs neutron porosity, density, and gamma ray are

used for building a model and forecasting the missing log in the well, shown in Figure (6).

The Gardner equation is often used for predicting the compressional slowness of a log based on

density data, although it has many limitations.
Vo = 0.11 * pyiuy (11)

Where: Bulk density is measured in grams per cubic centimeter and Vp refers to the velocity of

the P- waves in feet per second.

We applied the Gardner method and machine learning in the Well-5 to establish a correlation
between their outputs. This was done to demonstrate the impact on the final sand model.
Additionally, we applied the K.mod technique in the context of ML and neural networks.
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3.4. Machine Learning Implications on Geomechanical Modelling
The comparison of the two models showed significant variations in the predicted
compressional slowness values. The model created using machine learning showed reduced
slowness values in sand areas and increased slowness values in shale sections, as seen in Figure
(7). Consequently, a significant disparity in the parameters of the two models occurred when
using compressional slowness inputs for mechanical earth modeling and rock strength

computations. The machine learning outputs displayed higher values for unconfined
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compressive strength as well as static Young's modulus, with similar values for Poisson's ratio

(PR_STA_ML) compared to other models, as seen in Figure (7).
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[
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Fig. (7): Correlation between the mechanical earth model values in the two models.

Two sand management studies have been conducted using various techniques to compare
neural network outputs against empirical equation results. The research used the results of the
empirical equation, especially the Gardner equation, to examine the Nahr Umr formation. The
results showed that sand failure happened in different parts of the formation. The failed intervals
displayed the smallest unconfined compressive strength (UCS) values and the greatest Poisson's
ratio values, as illustrated in Figure (8).

The research specifically concentrated on controlling sand production at a specific depth (2531
m) in the Nahr Umr formation. Figure (9) shows that sand failure happened in the initial stages

of production, emphasizing the difficulties related to sand management at this specific time.
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Surprisingly, the findings demonstrated that there had been no occurrence of sand failure
across the whole Nahr Umr formation, as seen in Figure (10). This indicates that the model
developed using machine learning successfully and accurately detected and predicted the

absence of sand production in this specific formation.

Furthermore, a sand management study performed at an exact depth in the Nahr Umr formation
showed favorable results. Figure (11) shows that the analysis result in a "green flag" status,
suggesting that the occurrence of sand production in this well is unlikely based on the current
parameters. The results closely matched to the observations from Well-4, emphasizing the
accuracy and efficacy of the machine learning model in estimating the compressional slowness
parameter and its influence on sand production. The findings indicate that using the empirical
equation in the sand management model without key well logs, such as the sonic log, can lead
to mistakes in calculation. This is evident from the production data of the Nahr Umr formation,
which indicates that zone C is not producing sand. The Gardner equation-based model reliably
predicts sand production from the first moment. On the other hand, the machine learning
technique produces more reliable results that match with the actual production data, indicating
that there is no sand production in Well-5 from Zone C. In the current scenario, the machine
learning technique performs better than the empirical equations. By incorporating key well log,
this method improves prediction accuracy and eliminates errors, leading to a more accurate sand

management model.
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Fig. (11): Displays the sand management outcomes for well-5 in the Nahr Umr
Formation at a single depth.
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4. Conclusions

Ultimately, the empirical equation method often leads to inaccurate estimations of rock
strength in different intervals, overestimating it in shale intervals and underestimating it in sand
intervals. Similarly, the model driven by the Gardner equation incorrectly predicts sand
production right from the beginning, contradicting the actual production data. On the other
hand, the machine learning model demonstrates better alignment with the production data,
providing a more accurate representation of the sand production behavior. The validation of the
machine learning output models with the well production profile further confirms their realistic
and reliable performance. In the case of the Well-5, the machine learning model accurately
indicates no occurrence of sand failure. The suggested approach offers guidance on how to use
machine learning techniques to improve precision and produce the best results for
geomechanical parameter prediction. Furthermore, machine learning parameters derived from
well-integrated log data serve as optimal inputs for sand management studies. Therefore, it is
recommended to apply machine learning techniques in geomechanical studies when key logs
are missing, as they can replace empirical equations and provide more reliable results.
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