Effect of Strontium on the Structural, Optical, and Magnetic Properties of Bi(1-x)SrxFeO3
DOI:
https://doi.org/10.52716/jprs.v15i1.898Keywords:
solid-state reaction, Bi(1-x)SrxFeO3, magnetic properties.Abstract
The composite Bi(1-x) SrxFeO3 (x = 0.0, 0.2, 0.4, 0.6, 0.8) was produced via solid-state reaction technique at 850 °C, in order to evaluate how strontium affects the structure. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), magnetic analysis (VSM), and band gap energy measurements were performed by UV- visible spectroscopy. The results obtained are the formation of crystalline materials of rhombohedral surfaces and change to the pseudocubic phase at x = 0.4. The particle size declines from 36.5 nm up to 17 nm for the pure sample in BSFO. The strontium Sr+2 caused an increase in Remnant magnetization (Mr) and coercive field (Hc), which lead to the magnetization development of BiFeO3, UV- visible spectroscopy used to calculate the direct optical band gap of all samples had its value on the order of 2.4 to 2.9 eV.
References
S. Sindhu, and M. R. Anantharaman, “Preparation and Characterization of Spinel Ferrites –Their Incorporation in Rubber Matrix and Evaluation of Properties,” PhD diss., Cochin University of Science and Technology, 2001. http://dyuthi.cusat.ac.in/purl/1001
D. Dimos, and C. Mueller, “Perovskite Thin Films For High-Frequency Capacitor Applications”, Annual Review of Materials Research, vol. 28, pp. 397-419, 1998. https://doi.org/10.1146/annurev.matsci.28.1.397
A. I. Kingon, S. K. Streiffer, C. Basceri, and S. R. Summerfelt, “High-Permittivity Perovskite Thin Films for Dynamic Random-Access Memories", MRS Bulletin, vol. 21, no. 7, pp. 46-52, 1996. https://doi.org/10.1557/S0883769400035910
H. Obayashi, Y. Sakurai, and T. Gejo, “Perovskite-type oxides as ethanol sensors”, Journal of Solid State Chemistry, vol. 17, no. 3, pp. 299-303, 1976. https://doi.org/10.1016/0022-4596(76)90135-3
T. Rogers-Hayden and N. Pidgeon, “Moving engagemen, upstream” Nanotechnologies and the royal society and royal academy of engineering’s inquiry,” Public Underst. Sci., vol. 16, no. 3, pp. 345–364, Jul. 2007. https://doi.org/10.1177/0963662506076141
J. Wu, S. Mao, Z.-Guang Ye, Z. Xiea and L. Zhenga,” Room-temperature ferromagnetic/ferroelectric BiFeO3 synthesized by a self-catalyzed fast reaction process”, Journal of Materials Chemistry, vol. 20, no. 48, pp. 6512-6516, 2012. http://dx.doi.org/10.1039/C0JM00729C
S. Gulah and L. Masoudi, “Study of the structural, electronic and magnetic properties of BiFeO3 perovskite”, MA thesis, Al-Arabi Al-Tepsi University.
Y. F. Popov, A. K. Zvezdin, G. P. Vorob'Ev, A. M. Kadomtseva, V. A. Murashev, D. N. Rakov, D. Parsons, “linear magnetoelectric effect and phase transitions in bismuth ferrite, BiFeO3” , JETP Letters, vol 57, no. 1, pp. 69-73, 1993.
N. A. Hill, “Why Are There so Few Magnetic Ferroelectrics?”, The Journal of Physical Chemistry B, vol. 104, no. 29, pp. 6694-6709, 2000. https://doi.org/10.1021/jp000114x
M. Amin, “Exploring the Multifunctional Properties of BiFeO3 -Based Multiferroics”, Department of Physics, University of the Punjab, Lahore, 54590 (Pakistan), 2018.
W. Nan, L. Xudong, L. Han, Z. Zhiqiang, R. Zhang, H. Olin, and Y. Yang, “Structure, Performance, and Application of BiFeO3 Nanomaterials”, Nano-Micro Letters, vol. 12, article no. 81, 2020. https://doi.org/10.1007/s40820-020-00420-6
V. A. Khomchenko, D. A. Kiselev, J. M. Vieira, A. L. Kholkin, M. A. Sá, and Y. G. Pogorelov, “Synthesis and multiferroic properties of Bi0.8A0.2FeO3 (A=Ca, Sr, Pb) ceramics”, Appl. Phys. Lett., vol. 90, no. 24, p. 242901, 2007. https://doi.org/10.1063/1.2747665
A. Z. Simões, F. G. Garcia, and C. dos Santos Riccardi, “Rietveld analysys and electrical properties of lanthanum doped BiFeO3 ceramics”, Materials Chemistry and Physics, vol. 116, no. 2–3, pp. 305-309, 2009. https://doi.org/10.1016/j.matchemphys.2009.04.036
M. A. Awad, “Study the structural electrical and magnetic properties of M-type nano hexaferrites prepared via chemical route”, the Degree of master of the University of Kirkuk, 2021.
S. Palomares-Sánchez, S. Ponce-Castañeda, F. Ruiz, M. Mirabal-García, J. R. Martínez, and S. Díaz-Castañón, “Structural and magnetic characterization of (Ba,Sr)-hexaferrite powders,” Rev. Metal., vol. 35, no. 3, pp. 143–147, 1999. https://doi.org/10.3989/revmetalm.1999.v35.i3.617
M. Troemel, “Institute für Anorganische Chemie der Johann Wolfgang”, ICDD Grant-in-Aid Recipients, Goethe-Universität, Frankfurt, Germany, 2014.
K. Uchino, S. Nomura, L. E. Cross, R. E. Newnham, and S. J. Jang, “Electrostrictive effect in perovskites and its transducer applications”, Journal of Materials Science, vol. 16, pp. 569–578, 1981. https://doi.org/10.1007/BF00552193
M. Z. Shoushtari, A. Emami, and S. E. M. Ghahfarokhi, “Effect of bismuth doping on the structural and magnetic properties of zinc-ferrite nanoparticles prepared by a microwave combustion method", Journal of Magnetism and Magnetic Materials, vol. 419, pp. 572-579, 2016. https://doi.org/10.1016/j.jmmm.2016.06.080
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Khalid H. Jebur

This work is licensed under a Creative Commons Attribution 4.0 International License.