Improving Fuel Product Quality from Catalytic Cracking Units in Oil Refineries Using a Co-HfO2/Mesoporous SiO2 Nanocomposite Catalyst
DOI:
https://doi.org/10.52716/jprs.v15i1.907Keywords:
Nanocomposite catalyst; Cobalt; Hafnium oxide; Mesoporous silica; Catalytic cracking.Abstract
Catalytic cracking is fundamental in oil refineries for producing valuable fuels and chemicals. Conventional catalysts lack optimal selectivity resulting in inferior fuel quality. This work develops an innovative cobalt-hafnium oxide nanocomposite catalyst supported on mesoporous silica. The tailored nanostructure displays remarkable activity, selectivity and stability for upgrading hydrocarbon fractions. Composite synthesis first prepares cobalt nanoparticles, hafnium oxide and mesoporous silica separately then assembles these via impregnation. Catalyst characterization analyzes morphology, crystallinity and porosity. A fixed-bed reactor evaluates performance cracking model feed at 500 °C and 2 bar. Products undergo chromatographic quantification revealing 94% heavy oil conversion and 67% gasoline selectivity at 8 h-1 space velocity. Analysis shows obtained high purity, high-octane fuels match industry benchmarks. The stable selective nanocomposite catalyst successfully upgrades petroleum streams under mild conditions to improve refinery economics.
References
A. Oloruntoba, Y. Zhang, and C. S. Hsu, "State-of-the-art review of fluid catalytic cracking (FCC) catalyst regeneration intensification technologies" Energies, vol. 15, no. 6, p. 2061, 2022. Doi: https://doi.org/10.3390/en15062061
J. Xie and U. Olsbye, "The Oxygenate-Mediated Conversion of COx to Hydrocarbons─ On the Role of Zeolites in Tandem Catalysis," Chemical reviews, vol. 123, no. 20, pp. 11775-11816, 2023. Doi: https://doi.org/10.1021/acs.chemrev.3c00058
J. N. Armor, "A history of industrial catalysis," Catalysis Today, vol. 163, no. 1, pp. 3-9, 2011. Doi: https://doi.org/10.1016/j.cattod.2009.11.019
A. Tanimu, G. Tanimu, H. Alasiri, and A. Aitani, "Catalytic cracking of crude oil: mini review of catalyst formulations for enhanced selectivity to light olefins," Energy & Fuels, vol. 36, no. 10, pp. 5152-5166, 2022. Doi: https://doi.org/10.1021/acs.energyfuels.2c00567
R. Sadeghbeigi, Fluid catalytic cracking handbook: An expert guide to the practical operation, design, and optimization of FCC units. Butterworth-Heinemann, 2020. Doi: https://doi.org/10.1016/C2016-0-01176-2
M. Bertero, J. R. García, M. Falco, and U. Sedran, "Fcc matrix components and their combination with y zeolite to enhance the deoxygenation of bio-oils," BioEnergy Research, vol. 15, no. 2, pp. 1327-1341, 2022. Doi: https://doi.org/10.1007/s12155-021-10322-z
M. Nahvi, A. D. Koohi, and M. Sedighi, "Thermodynamic analysis and techno-economic assessment of fluid catalytic cracking unit in the oil refining process," Journal of Cleaner Production, vol. 413, p. 137447, 2023. Doi: https://doi.org/10.1016/j.jclepro.2023.137447
Y. H. Chan et al., "Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects," Chemical Engineering Journal, vol. 397, p. 125406, 2020. Doi: https://doi.org/10.1016/j.cej.2020.125406
J. Mao, P. Liu, J. Li, J. Yan, S. Ye, and W. Song, "Accelerated intermediate conversion through nickel doping into mesoporous Co-N/C nanopolyhedron for efficient ORR," Journal of Energy Chemistry, vol. 73, pp. 240-247, 2022. Doi: https://doi.org/10.1016/j.jechem.2022.04.047
H. Yu et al., "An investigation of tribochemical reaction kinetics from the perspective of tribo-oxidation," Tribology International, vol. 165, p. 107289, 2021. Dio: https://doi.org/10.1016/j.triboint.2021.107289
C. J. Okere and J. J. Sheng, "Review on clean hydrogen generation from petroleum reservoirs: Fundamentals, mechanisms, and field applications," International Journal of Hydrogen Energy, 2023. Doi: https://doi.org/10.1016/j.ijhydene.2023.06.135
M. S. Abbas-Abadi et al., "Challenges and opportunities of light olefin production via thermal and catalytic pyrolysis of end-of-life polyolefins: Towards full recyclability," Progress in Energy and Combustion Science, vol. 96, p. 101046, 2023. Doi: https://doi.org/10.1016/j.pecs.2022.101046
X. Hu, J. Lu, Y. Liu, L. Chen, X. Zhang, and H. Wang, "Sustainable catalytic oxidation of glycerol: a review," Environmental Chemistry Letters, pp. 1-37, 2023. Doi: https://doi.org/10.1007/s10311-023-01608-z
P. Richards and J. Barker, Automotive fuels reference book. SAE International, 2023. ISBN of 978-1-4686-0578-5
C. S. Hsu, P. R. Robinson, C. S. Hsu, and P. R. Robinson, "Cracking," Petroleum Science and Technology, pp. 211-244, 2019. Doi: https://doi.org/10.1007/978-3-030-16275-7
M. Ershov, D. Potanin, A. Gueseva, T. M. Abdellatief, and V. Kapustin, "Novel strategy to develop the technology of high-octane alternative fuel based on low-octane gasoline Fischer-Tropsch process," Fuel, vol. 261, p. 116330, 2020. Doi: https://doi.org/10.1016/j.fuel.2019.116330
F. Chen et al., "High value utilization of inferior diesel for BTX production: Mechanisms, catalysts, conditions and challenges," Applied Catalysis A: General, vol. 616, p. 118095, 2021. Doi: https://doi.org/10.1016/j.apcata.2021.118095
M. Khalil, G. T. Kadja, and M. M. Ilmi, "Advanced nanomaterials for catalysis: Current progress in fine chemical synthesis, hydrocarbon processing, and renewable energy," Journal of Industrial and Engineering Chemistry, vol. 93, pp. 78-100, 2021. Doi: https://doi.org/10.1016/j.jiec.2020.09.028
B. Maleki, Y. K. Venkatesh, S. S. A. Talesh, H. Esmaeili, S. Mohan, and G. R. Balakrishna, "A novel biomass derived activated carbon mediated AC@ ZnO/NiO bifunctional nanocatalyst to produce high-quality biodiesel from dairy industry waste oil: CI engine performance and emission," Chemical Engineering Journal, vol. 467, p. 143399, 2023. Doi: https://doi.org/10.1016/j.cej.2023.143399
N. F. Raduwan, N. Shaari, S. K. Kamarudin, M. S. Masdar, and R. M. Yunus, "An overview of nanomaterials in fuel cells: Synthesis method and application," International Journal of Hydrogen Energy, vol. 47, no. 42, pp. 18468-18495, 2022. Doi: https://doi.org/10.1016/j.ijhydene.2022.03.035
Q. Sun, N. Wang, and J. Yu, "Advances in Catalytic Applications of Zeolite‐Supported Metal Catalysts," Advanced Materials, vol. 33, no. 51, p. 2104442, 2021. Doi: https://doi.org/10.1002/adma.202104442
S. M. Elahi, "Nano-Catalytic In-Situ Upgrading and Enhanced Recovery of Heavy Oil from Carbonate Reservoirs," Doctoral thesis, University of Calgary, Calgary, Canada, 2020.
M. A. Alabdullah et al., "A viewpoint on the refinery of the future: catalyst and process challenges," ACS Catalysis, vol. 10, no. 15, pp. 8131-8140, 2020. Doi: https://doi.org/10.1021/acscatal.0c02209
H. A. Al-Jamimi, G. M. BinMakhashen, K. Deb, and T. A. Saleh, "Multiobjective optimization and analysis of petroleum refinery catalytic processes: A review," Fuel, vol. 288, p. 119678, 2021. Doi: https://doi.org/10.1016/j.fuel.2020.119678
A. H. Abu-Ghazala, H. H. Abdelhady, A. A. Mazhar, and M. S. El-Deab, "Exceptional room temperature catalytic transesterification of waste cooking oil to biodiesel using environmentally-benign K2CO3/γ-Al2O3 nano-catalyst," Chemical Engineering Journal, vol. 474, p. 145784, 2023.
Doi: https://doi.org/10.1016/j.cej.2023.145784
B. J. Smith, D. J. Graziano, M. E. Riddle, D. J. Liu, P. Sun, C. Iloeje, E. Kao, and D. Diamond, "Platinum group metal catalysts-supply chain deep dive assessment," USDOE Office of Policy (PO), Washington DC (United States), 2022.
A. G. Olaremu, W. R. Adedoyin, O. T. Ore, and A. O. Adeola, "Sustainable development and enhancement of cracking processes using metallic composites," Applied Petrochemical Research, vol. 11, no. 1, pp. 1-18, 2021. Doi: https://doi.org/10.1007/s13203-021-00263-1
I. C. ten Have and B. M. Weckhuysen, "The active phase in cobalt-based Fischer-Tropsch synthesis," Chem Catalysis, vol. 1, no. 2, pp. 339-363, 2021. Doi: https://doi.org/10.1016/j.checat.2021.05.011
R. S. Abusweireh, N. Rajamohan, and Y. Vasseghian, "Enhanced production of biodiesel using nanomaterials: A detailed review on the mechanism and influencing factors," Fuel, vol. 319, p. 123862, 2022. Doi: https://doi.org/10.1016/j.fuel.2022.123862
A. F. Khusnuriyalova, M. Caporali, E. Hey‐Hawkins, O. G. Sinyashin, and D. G. Yakhvarov, "Preparation of cobalt nanoparticles," European Journal of Inorganic Chemistry, vol. 2021, no. 30, pp. 3023-3047, 2021. Doi: https://doi.org/10.1002/ejic.202100367
A. Mourhly, M. Khachani, A. E. Hamidi, M. Kacimi, M. Halim, and S. Arsalane, "The synthesis and characterization of low-cost mesoporous silica SiO2 from local pumice rock," Nanomaterials and Nanotechnology, vol. 5, p. 35, 2015. Doi: https://doi.org/10.5772/6203
L. Staišiūnas et al., "Silicon passivation by ultrathin hafnium oxide layer for photoelectrochemical applications," Frontiers in Chemistry, vol. 10, p. 859023, 2022. Doi: https://doi.org/10.3389/fchem.2022.859023
G. Królczyk, W. Kacalak, and M. Wieczorowski, "3D Parametric and Nonparametric Description of Surface Topography in Manufacturing Processes," vol. 14, ed: MDPI, 2021, p. 1987. Doi: https://doi.org/10.3390/ma14081987
S. van Dyk, J. Su, J. D. Mcmillan, and J. Saddler, "Potential synergies of drop‐in biofuel production with further co‐processing at oil refineries," Biofuels, Bioproducts and Biorefining, vol. 13, no. 3, pp. 760-775, 2019. Doi: https://doi.org/10.1002/bbb.1974
R. Palos, A. Gutiérrez, M. a. L. Fernández, M. J. Azkoiti, J. Bilbao, and J. M. Arandes, "Converting the surplus of low-quality naphtha into more valuable products by feeding it to a fluid catalytic cracking unit," Industrial & Engineering Chemistry Research, vol. 59, no. 38, pp. 16868-16875, 2020. Doi: https://doi.org/10.1021/acs.iecr.0c03257
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Haider M. Hussein Alkhafaji

This work is licensed under a Creative Commons Attribution 4.0 International License.