تطبيق التعلم الآلي المتقدم للتنبؤ بالنفاذية لتكوين (M) في احد حقول النفط العراقية

المؤلفون

  • نور الهدى كاظم محمد Department of Petroleum Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • غانم مديح فرمان Department of Petroleum Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq

DOI:

https://doi.org/10.52716/jprs.v14i1.777

الكلمات المفتاحية:

Machine learning, Random forest, Multiple linear regression, Permeability prediction.

الملخص

يعتبر تقييم النفاذية خطوة حيوية في هندسة المكامن بسبب تأثيرها على كل من توصيف المكامن والتخطيط للتثقيب والكفاءة الاقتصادية للمكمن. يعتمد توقع نفاذية المكمن على بيانات سجل البئر و تحليل اللباب. هناك طرق متعددة للتنبؤ بالنفاذية مثل الطرق الكلاسيكية، الطرق التجريبية والطرق الإحصائية باستخدام التعلم الآلي. في هذا البحث تمت استخدام و مقارنة خوارزمية التعلم الالي (الغابات العشوائية Random Forest) و (الانحدار الخطي المتعدد Multiple Linear Regression)  للتنبؤ بالنفاذية في مكمن مودود في حقل (BH) شمال العراق. كانت خوارزمية الغابات العشوائية  Random Forestهي الأكثر دقة ولديها خطأ تنبؤ مربع متوسط ​​الجذر (RMSPE) أقل من خوارزمية الانحدار الخطي المتعددة مع قيمة معامل ترابط احصائي عالية تبلغ 0.965 في مجموعة بيانات التدريب و 0.962 في مجموعة بيانات الاختبار. نتيجة لذلك، توفر خوارزمية Random Forest طريقة مثالية للتنبؤ بالنفاذية في المناطق غير مأخوذ فيها لباب non-core interval و توزيعها في النموذج الجيولوجي.

المراجع

Z. A. Mahdi and G. M. Farman, “A Review on Models for Evaluating Rock Petrophysical Properties”, Iraqi Journal of Chemical and Petroleum Engineering, vol. 24, no. 1, pp. 125–136, 2023. https://doi.org/10.31699/IJCPE.2023.1.14

R. A. Hashim and G. M. Farman, “Evaluating Petrophysical Properties of Sa’di Reservoir in Halfaya Oil Field”, Iraqi Geological Journal, vol. 56, no. 2D, pp. 118–126, 2023. https://doi.org/10.46717/igj.56.2D.9ms-2023-10-15

X. Yang, Y. Mehmani, William A. Perkins, A. Pasquali, M. Schönherr, K. Kim, M. Perego, M. L. Parks, N. Trask, M. T. Balhoff, M. C. Richmond, M. Geier, M. Krafczyk, L. Luo, A. M. Tartakovsky, and T. D. Scheibe, “Intercomparison of 3D pore-scale flow and solute transport simulation methods”, Adv. Water Resour., vol. 95, pp. 176–189, 2016. https://doi.org/10.1016/j.advwatres.2015.09.015.

H A. H. Tali, S. K. Abdulridha, L. A. Khamees, J. I. Humadi, G. M. Farman, and S. J. Naser, “Permeability estimation of Yamama formation in a Southern Iraqi oil field, case study”, Second International Conference on Innovations in Software Architecture and Computational Systems (ISACS 2022), 2023-01-05 | Conference paper. https://doi.org/10.1063/5.0163281

D. A. Otchere, T. O. A. Ganat, R. Gholami, and M. Lawal, “A novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction,” J. Nat. Gas Sci. Eng., vol. 91, 103962, 2021. https://doi.org/10.1016/j.jngse.2021.103962.

N. A. Kadhim and G. M. Farman, “Advanced Geostatistical Techniques for Building 3D Geological Modeling: A Case Study from Cretaceous Reservoir in Bai Hassan Oil Field”, Iraqi Geological Journal, vol. 56, no. 2F, pp. 214-227, 2023. https://doi.org/10.46717/igj.56.2F.14ms-2023-12-20

G. Zeynalov, Muhammed A. Ismail, and F. Al-Beyati, “Petro physical Modeling of the Tertiary Reservoirs in the Small Giant Bai Hassan Oil”, Int. J. Enhanc. Res. Sci. Technol. Eng., vol. 5, no. 12, pp. 80–89, 2016.

U. S. Alameedy, A. T. Almomen, and N. Abd, “Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data”, Iraqi Geol. J., vol. 56, no. 1D, pp. 175–187, 2023. https://doi.org/10.46717/igj.56.1D.14ms-2023-4-23

M. W. Berry, A. Mohamed, and B. W. Yap, "Supervised and unsupervised learning for data science", Springer, 2019. https://doi.org/10.1007/978-3-030-22475-2

A. Singh, N. Thakur, and A. Sharma, “A review of supervised machine learning algorithms”, in 2016 3rd international conference on computing for sustainable global development (INDIACom), Ieee, pp. 1310–1315, 2016.

H. Wang and S. Chen, “Insights into the Application of Machine Learning in Reservoir Engineering: Current Developments and Future Trends”, Energies, vol. 16, no. 3, 1392, 2023. https://doi.org/10.3390/en16031392

A. Sircar, K. Yadav, K. Rayavarapu, N. Bist, and H. Oza, “Application of machine learning and artificial intelligence in oil and gas industry”, Pet. Res., vol. 6, no. 4, pp. 379–391, 2021. https://doi.org/10.1016/j.ptlrs.2021.05.009

H. Gamal, A. Alsaihati, and S. Elkatatny, “Predicting the rock sonic logs while drilling by random forest and decision tree-based algorithms”, J. Energy Resour. Technol., vol. 144, no. 4, 2022. https://doi.org/10.1115/1.4051670

H. Gamal, A. Alsaihati, S. Elkatatny, S. Haidary, and A. Abdulraheem, “Rock strength prediction in real-time while drilling employing random forest and functional network techniques”, J. Energy Resour. Technol., vol. 143, no. 9, 2021. https://doi.org/10.1115/1.4050843

M. A. Mirza, M. Ghoroori, and Z. Chen, “Intelligent Petroleum Engineering”, Engineering, vol. 18, pp. 27–32, 2022. https://doi.org/10.1016/j.eng.2022.06.009

A. Kumar, “A Machine Learning Application for Field Planning,” in Offshore Technology Conference, Offshore Technology Conference, Paper Number: OTC-29224-MS, Houston, Texas, 2019. https://doi.org/10.4043/29224-MS

M. Cordeiro-Costas, D. Villanueva, P. Eguía-Oller, and E. Granada-Álvarez, “Machine learning and deep learning models applied to photovoltaic production forecasting”, Appl. Sci., vol. 12, no. 17, 8769, 2022. https://doi.org/10.3390/app12178769

L. Breiman, “Random forests”, Mach. Learn., vol. 45, pp. 5–32, 2001. https://doi.org/10.1023/A:1010933404324

W. J. Al-Mudhafar, “Applied Geostatistical Reservoir Characterization in R: Review and Implementation of Rock Facies Classification and Prediction Algorithms-Part I”, in Offshore Technology Conference, OnePetro, 2016. https://doi.org/10.4043/26947-MS

S. Bhattacharya and S. Mishra, “Applications of machine learning for facies and fracture prediction using Bayesian Network Theory and Random Forest: Case studies from the Appalachian basin, USA”, J. Pet. Sci. Eng., vol. 170, pp. 1005–1017, 2018. https://doi.org/10.1016/j.petrol.2018.06.075

W. J. Al-Mudhafar, “Advanced supervised machine learning algorithms for efficient electrofacies classification of a carbonate reservoir in a giant southern iraqi oil field”, in Offshore Technology Conference, OnePetro, 2020. https://doi.org/10.4043/30906-MS

J. L. L. Pereira, "Permeability prediction from well log data using multiple regression analysis", West Virginia University, 2004.

B. A. Al-Baldawi, “Permeability Estimation of Khasib Formation in Amara Oil Field from Well logs Data Using Multilinear Regression Technique and Empirical”, J. Pet. Res. Stud., vol. 6, no. 1, 2016. https://doi.org/10.52716/jprs.v6i1.134.

التنزيلات

منشور

2024-03-20

كيفية الاقتباس

(1)
Mohammed, N. alhuda K. .; Farman, G. M. . تطبيق التعلم الآلي المتقدم للتنبؤ بالنفاذية لتكوين (M) في احد حقول النفط العراقية. Journal of Petroleum Research and Studies 2024, 14, 60-76.