تحقيق رقمي لتعزيز تخزين الطاقة الحرارية الكامنة من خلال استخدام الزعانف الحلزونية المكونة من الألومنيوم
الكلمات المفتاحية:
Phase change materials, Thermal conductivity enhancement, Thermal energy storage, Spiral fins , foam spiral finsالملخص
يعد استخدام مواد متغيرة الطور (PCM) لتخزين الطاقة الحرارية الكامنة أمرًا بالغ الأهمية لسد التفاوت بين إنتاج الطاقة واستهلاكها. يستقصي هذا البحث عدديًا في استخدام الزعانف الحلزونية المزدوجة والرباعية، والزعانف الحلزونية ذات المسامية الهشة، والزعانف المستطيلة والاسطوانية في الوضع الأفقي لتحسين نقل الحرارة في مبادل حراري ذو غلاف وأنبوب، ويقارن الأنواع المختلفة مع التصميم بدون زعانف. تم استخدام Comsol Multiphysics (6.0)لأنشاء نموذج ثلاثي الأبعاد. في هذه المحاكاة، تم أخذ الحمل الحراري الطبيعي في الاعتبار، و استخدام كمية متساوية تقريبًا من مادة متغير الطور في جميع الحالات. حيث تم استخدام الماء كسائل ناقل للحرارة والبارافين التجاري (RT-28) كمادة متغيرة الطور في هذه المحاكاة. أظهرت النتائج أن زمن الذوبان انخفض بشكل ملحوظ عند استخدام الزعانف الحلزونية، كما تحسن معدل نقل الحرارة بشكل كبير جدا عند استخدام الزعانف الحلزونية ذات المسامية الهشة.
المراجع
P. Jiang, H. Bai, Q. Xu, and A. Arsalanloo, “Thermodynamic, exergoeconomic, and economic analyses with multi-objective optimization of a novel liquid air energy storage coupled with an off-shore wind farm”, Sustainable Cities and Society, vol. 90, p. 104353, 2023. https://doi.org/10.1016/j.scs.2022.104353.
P. Samiyammal, V. Fuskele, S. K. Fakruddin Babavali, N. Mohammed Khan, M. Shoukhatulla Ansari, and D. T. Sakhare, “Experimental investigations on thermal conductivity and thermal stability of the PCM using Nano-MgO”, Materials Today: Proceedings, vol. 69, Part 3, pp. 759-763, 2022. https://doi.org/10.1016/j.matpr.2022.07.158.
K. A. M. Alharbi, M. R. Khan, M. Ould Sidi, A. M. Algelany, S. Elattar, and N. A. Ahammad, “Investigation of hydromagnetic bioconvection flow of Oldroyd-B nanofluid past a porous stretching surface”, Biomass Conversion and Biorefinery, vol. 13, pp. 4331–4342, 2023. https://doi.org/10.1007/s13399-022-02785-7.
K. A. M. Alharbi, U. Khan, N. A. Ahammad, Adnan, B. Ullah, H. A. Wahab, M. Zaib, and A. M. Galal, “Heat transport mechanism in Cu/water and (Cu–Al2O3)/water under the influence of thermophysical characteristics and non-linear thermal radiation for Blasius/Sakiadis models: numerical investigation”, Journal of the Indian Chemical Society, vol. 99, no. 8, p. 100578, 2022. https://doi.org/10.1016/j.jics.2022.100578.
M. Hassan, F. Mebarek-Oudina, A. Faisal, A. Ghafar, and A. I. Ismail, “Thermal energy and mass transport of shear thinning fluid under effects of low to high shear rate viscosity”, International Journal of Thermofluids, vol. 15, p. 100176, 2022. https://doi.org/10.1016/j.ijft.2022.100176.
I. Chabani, F. Mebarek-Oudina, H. Vaidya, and A. I. Ismail, “Numerical analysis of magnetic hybrid Nano-fluid natural convective flow in an adjusted porous trapezoidal enclosure”, Journal of Magnetism and Magnetic Materials, vol. 564, part 2, p. 170142, 2022. https://doi.org/10.1016/j.jmmm.2022.170142.
K. A. M. Alharbi, O. Aldosari, N. Sina, H. Ş. Aybar, S. Fuxi, S. E. Alkhatib, and A. A. Mousa, “Installation of rectangular enclosures filled with phase change nanomaterials on the thrombus walls of a residential building to manage solar radiation in different seasons of the year”, Journal of Building Engineering, vol. 57, p. 104732, 2022. https://doi.org/10.1016/j.jobe.2022.104732.
M. Mozafari, A. Lee, and S. Cheng, “A novel dual-PCM configuration to improve simultaneous energy storage and recovery in triplex-tube heat exchanger”, International Journal of Heat and Mass Transfer, vol. 186, p. 122420, 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122420.
P. Huang, G. Wei, L. Cui, C. Xu, and X. Du, “Experimental and numerical optimization of cascaded PCM heat sink by using low melting point alloys”, Energy Conversion and Management, vol. 269, p. 116149, 2022. https://doi.org/10.1016/j.enconman.2022.116149.
A. Kumar, P. Verma, and L. Varshney, “An experimental and numerical study on phase change material melting rate enhancement for a horizontal semi-circular shell and tube thermal energy storage system”, Journal of Energy Storage, vol. 45, p. 103734, 2022. https://doi.org/10.1016/j.est.2021.103734.
G. Mishra, A. Memon, A.K. Gupta, and N. Nirmalkar, “Computational study on effect of enclosure shapes on melting characteristics of phase change material around a heated cylinder”, Case Studies in Thermal Engineering, vol. 34, p. 102032, 2022. https://doi.org/10.1016/j.csite.2022.102032.
A. K. Gupta, G. Mishra, and S. Singh, “Numerical study of MWCNT enhanced PCM melting through a heated undulated wall in the latent heat storage unit”, Thermal Science and Engineering Progress, vol. 27, p. 101172, 2022. https://doi.org/10.1016/j.tsep.2021.101172.
A. Memon, G. Mishra, and A. K. Gupta, “Buoyancy-driven melting and heat transfer around a horizontal cylinder in square enclosure filled with phase change material”, Applied Thermal Engineering, vol. 181, p. 115990, 2020. https://doi.org/10.1016/j.applthermaleng.2020.115990.
Q. Li, J. Jiang, Y. Hong, and J. Du, “Numerical investigation of thermal management performances in a solar photovoltaic system by using the phase change material coupled with bifurcated fractal fins”, Journal of Energy Storage, vol. 56, part C, p. 106156, 2022. https://doi.org/10.1016/j.est.2022.106156.
A. Belazreg, A. Abderrahmane, N. A. A. Qasem, N. Sene, S. Mohammed, O. Younis, K. Guedri, N. Nasajpour-Esfahani, and D. Toghraie, “Effect of Y-shaped fins on the performance of shell-and-tube thermal energy storage unit”, Case Studies in Thermal Engineering, vol. 40, p. 102485, 2022. https://doi.org/10.1016/j.csite.2022.102485.
S. Zhang, L. Pu, L. Xu, R. Liu, and Y. Li, “Melting performance analysis of phase change materials in different finned thermal energy storage”, Applied Thermal Engineering, vol. 176, p. 115425, 2020. https://doi.org/10.1016/j.applthermaleng.2020.115425.
A. K. Barik, and P. K. Swain, “Constructal invasion of fins for melting time prediction of a phase change material in a triplex-tube heat exchanger”, Journal of Energy Storage, vol. 54, p. 105281, 2022. https://doi.org/10.1016/j.est.2022.105281.
G. Wang, L. Feng, M. Altanji, K. Sharma, K. S. Nisar, and S. khorasani, “Proposing novel “L” shaped fin to boost the melting performance of a vertical PCM enclosure”, Case Studies in Thermal Engineering, vol. 28, p. 101465, 2021. https://doi.org/10.1016/j.csite.2021.101465.
S. Liu, H. Bai, Q. Xu, P. Jiang, S. khorasani, and A. Mohamed, “Investigations on effect of arrangement of fins on melting performance of vertical PCM enclosure (3D simulation using FVM methods)”, Alexandria Engineering Journal, vol. 61, no. 12, pp. 12139–12150, 2022. https://doi.org/10.1016/j.aej.2022.05.047.
Y. Wang, A. M. Abed, P. K. Singh, E. Tag-eldin, and A. Arsalanloo, “Multi-Stage Optimization of LHTESS by utilization of Y-shaped Fin in a rectangular enclosure”, Case Studies in Thermal Engineering, vol. 38, p. 102348, 2022. https://doi.org/10.1016/j.csite.2022.102348.
Y. Chen, L. Feng, S. S. Jamal, K. Sharma, I. Mahariq, F. Jarad, and A. Arsalanloo, “Compound usage of L shaped fin and Nano-particles for the acceleration of the solidification process inside a vertical enclosure (A comparison with ordinary double rectangular fin)”, Case Studies in Thermal Engineering, vol. 28, p. 101415, 2021. https://doi.org/10.1016/j.csite.2021.101415.
C. Zhang, J. Li, and Y. Chen, “Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins”, Applied Energy, vol. 259, p. 114102, 2020. https://doi.org/10.1016/j.apenergy.2019.114102.
M. Alizadeh, M. H. Shahavi, and D. D. Ganji, “Performance enhancement of nano PCM solidification in a hexagonal storage unit with innovative fin shapes dealing with time-dependent boundary conditions”, Energy Reports, vol. 8, pp. 8200–8214, 2022. https://doi.org/10.1016/j.egyr.2022.06.041.
L. A. Khan and M. M. Khan, “Role of orientation of fins in performance enhancement of a latent thermal energy storage unit”, Applied Thermal Engineering, vol. 175, p. 115408, 2020. https://doi.org/10.1016/j.applthermaleng.2020.115408.
M. S. Mahdi, A. F. Hasan, H. B. Mahood, A. N. Campbell, A. A. Khadom, A. M. A. Karim, and A. O. Sharif, “Numerical study and experimental validation of the effects of orientation and configuration on melting in a latent heat thermal storage unit”, Journal of Energy Storage, vol. 23, pp. 456–468, 2019. https://doi.org/10.1016/j.est.2019.04.013.
M. Hameter, and H. Walter, “Influence of the mushy zone constant on the numerical simulation of the melting and solidification process of phase change materials”, Computer Aided Chemical Engineering, vol. 38, pp. 439–444, 2016. https://doi.org/10.1016/B978-0-444-63428-3.50078-3.
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2025 Karrar A. Abdulaimaa, Tahseen A. Al-Hattab

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.