دراسة تجريبية لتأثير الرقم الهيدروجيني على خصائص الأسمنت العراقي صنف G: دراسة مقارنة مع الأسمنت الإماراتي
DOI:
https://doi.org/10.52716/jprs.v15i3.970الكلمات المفتاحية:
Cement Class G, pH impact, physical test, Iraqi and UAE cementالملخص
تعد عملية الأسمنت عملية بالغة الأهمية في حفر آبار النفط والغاز، حيث تكون الأخطاء مكلفة للغاية وتستغرق وقتًا طويلاً لتصحيحها. تشمل بعض المعايير الفنية التي تؤثر على هذه العملية الرقم الهيدروجيني للمياه المستخدمة في تحضير ملاط الأسمنت. تبحث هذه الدراسة في تأثير الرقم الهيدروجيني للمياه على خصائص ملاط الأسمنت من الفئة G. تم خلط ملاط الأسمنت باستخدام الماء المقطر وأربع عينات مياه بدرجة حموضة 9.5 و10 و11 و12 على التوالي، بدون أي إضافات. تم إجراء التحليلات الفيزيائية والكيميائية للأسمنت العراقي والإماراتي وفقًا لمواصفات API القياسية. تشير النتائج إلى أن أسمنت الإمارات العربية المتحدة يلبي إلى حد كبير مواصفات API، في حين أن الأسمنت العراقي لديه بعض الانحرافات بسبب اختلاف عمليات التصنيع، مما تسبب في حدوث أعطال عندما أجريت الاختبارات بالمياه العذبة. أظهرت الاختبارات الفيزيائية التي أجريت أن خليط الماء القلوي، الذي يزيد الرقم الهيدروجيني له عن 7، يضعف خصائص الأسمنت فيما يتعلق بقوة الضغط والكثافة، بينما يتأخر وقت التكثيف بحوالي 50 دقيقة عند قيمة الرقم الهيدروجيني الأعلى. دعت هذه الدراسة إلى مراعاة تأثيرات الرقم الهيدروجيني في تحضير ملاط الأسمنت لضمان عدم إضعاف الترابط واستبعاد الأعطال بعد التشغيل.. وأخيرا، تكمن أهمية هذا العمل في الأخذ بعين الاعتبار تأثير الرقم الهيدروجيني عند تحضير الملاط ذو الرابطة الجيدة، بالإضافة إلى تجنب فشل عملية الأسمنت بعد أداء المهمة.
المراجع
A. S. Al-Yami, J. Ramasamy, and V. Wagle, “Chemical additives for oil well cementing”, Res. Rev. J. Chem, vol. 6, no. 4, pp. 1–14, 2017.
M. E. Hossain and A. A. Al-Majed, “Fundamentals of sustainable drilling engineering”, John Wiley & Sons, 2015.
H. AL Khalaf, G. F. Kovacsne, N. A. Mohammed, G. Horvath, and R. Docs, “Effect of using Austrian pine cones powder as an additive on oil well cement properties”, Heliyon, vol. 9, no. 1, p. e12975, Jan. 2023. https://doi.org/10.1016/j.heliyon.2023.e12975.
A. Ahmed, A. A. Mahmoud, S. Elkatatny, and W. Chen, “The effect of weighting materials on oil-well cement properties while drilling deep wells”, Sustainability (Switzerland), vol. 11, no. 23, Dec. 2019. https://doi.org/10.3390/su11236776.
A. Lavrov and M. Torsæter, “Physics and mechanics of primary well cementing”, Springer, 2016.
D. K. Smith, “Cementing”, Richardson, TX; Society of Petroleum Engineers, 1989.
E. B. Nelson, “Well cementing”, Newnes, 1990.
R. Kiran, C. Teodoriu, Y. Dadmohammadi, R. Nygaard, D. Wood, M. Mokhtari, and S. Salehi, “Identification and evaluation of well integrity and causes of failure of well integrity barriers (A review)”, Journal of Natural Gas Science and Engineering, vol. 45, pp. 511–526, 2017. https://doi.org/10.1016/j.jngse.2017.05.009.
E. Broni-Bediako, O. F. Joel, and G. Ofori-Sarpong, “Oil well cement additives: a review of the common types”, Oil Gas Res, vol. 2, no. 1, pp. 1–7, 2016.
H. Roshan and M. R. Asef, “Characteristics of oilwell cement slurry using CMC”, SPE Drilling & Completion, vol. 25, no. 03, pp. 328–335, 2010. https://doi.org/10.2118/114246-PA.
Y. Li, S. Dong, R. Ahmed, L. Zhang, and B. Han, “Improving the mechanical characteristics of well cement using botryoid hybrid nano-carbon materials with proper dispersion”, Constr Build Mater, vol. 270, p. 121464, 2021. https://doi.org/10.1016/j.conbuildmat.2020.121464.
G. Abbas, S. Irawan, S. Kumar, and A. A. I. Elrayah, “Improving oil well cement slurry performance using hydroxypropylmethylcellulose polymer”, Advanced Materials Research, vol. 787, pp. 222–227, 2013. https://doi.org/10.4028/www.scientific.net/AMR.787.222.
Q. Feng, X. Yang, Z. Peng, Y. Zheng, and H. Liu, “Preparation and performance evaluation of hydrophobically associating polymer anti‐water channeling agent for oil well cement”, J Applied Polymer Science, vol. 138, no. 24, p. 50564, 2021. https://doi.org/10.1002/app.50564.
M. Murtaza, M. K. Rahman, and A. A. Al-Majed, “Effect of nanoclay on mechanical and rheological properties of oil well cement slurry under HPHT environment”, in International Petroleum Technology Conference, OnePetro, p. IPTC-18989-MS, 2016. https://doi.org/10.2523/IPTC-18989-MS.
H. Liu, Y. Yu, H. Liu, J. Jin, and S. Liu, “Hybrid effects of nano-silica and graphene oxide on mechanical properties and hydration products of oil well cement”, Construction and Building Materials, vol. 191, pp. 311–319, 2018. https://doi.org/10.1016/j.conbuildmat.2018.10.029.
A. Santra, P. J. Boul, and X. Pang, “Influence of nanomaterials in oilwell cement hydration and mechanical properties”, in SPE international oilfield nanotechnology conference and exhibition, OnePetro, p. SPE-156937-MS, 2012. https://doi.org/10.2118/156937-MS.
R. Amorin, E. Broni-Bediako, C. Westkinn, and P. O. Appau, “Performance Assessment and Economic Analysis of Blended Class G Cement with Local Cement for Oil Well Cementing Operations: A Case Study of Ghana”, in SPE Nigeria Annual International Conference and Exhibition, OnePetro, p. SPE-198823-MS, 2019. https://doi.org/10.2118/198823-MS.
E. Broni-Bediako and R. Amorin, “Advances in the Possibility of Utilising Construction Grade Cements (CGCs) for Oil Well Cementing”, Journal of Oil and Gas Research, vol. 3, no. 3, pp. 1–9, 2017.
D. Rouillac, “Cement evaluation logging handbook”, Éditions Technip, 1994.
A. H. Gowida, Z. Ahmad, S. Elkatatny, and M. Mahmoud, “Cement Evaluation Challenges”, in SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, OnePetro, 2018. https://doi.org/10.2118/192360-MS.
D. S. Ibrahim and F. H. M. Almahdawi, “Addition of super absorbent polymer for upgrading of cement quality in Iraqi oil wells,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 17, no. 3, pp. 83–90, 2016. https://doi.org/10.31699/IJCPE.2016.3.7.
A. Ahmed, A. A. Mahmoud, S. Elkatatny, and W. Chen, “The effect of weighting materials on oil-well cement properties while drilling deep wells”, Sustainability, vol. 11, no. 23, p. 6776, 2019. https://doi.org/10.3390/su11236776.
R. P. Sutton, J. Fanchi, and L. W. Lake, “Petroleum engineering handbook, General Engineering”, vol. 6, Society of Petroleum Engineers, 2006.
P. Šiler, I. Kolářová, T. Sehnal, J. Másilko, and T. Opravil, “The Determination of the Influence of pH Value of Curing Conditions on Portland Cement Hydration”, Procedia Engineering, Elsevier Ltd, pp. 10–17, 2016. https://doi.org/10.1016/j.proeng.2016.07.393.
J. Camilleri and T. R. Pitt Ford, “Evaluation of the effect of tracer pH on the sealing ability of glass ionomer cement and mineral trioxide aggregate,” Journal of Materials Science: Materials in Medicine, vol. 19, pp. 2941–2948, 2008. https://doi.org/10.1007/s10856-008-3429-y.
Y. Sumra, S. Payam, and I. Zainah, “The pH of cement-based materials: A review”, Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 35, pp. 908–924, 2020. https://doi.org/10.1007/s11595-020-2337-y.
Q. Zhang, Y. Li, Q. Chen, Y. Liu, Y. Feng, and D. Wang, “Effects of temperatures and pH values on rheological properties of cemented paste backfill”, Journal of Central South University, vol. 28, no. 6, pp. 1707–1723, 2021. https://doi.org/10.1007/s11771-021-4728-4.
L. Zhao, N. Li, J. Yang, H. Wang, L. Zheng, and C. Wang, “Alkali-resistant and ph-sensitive water absorbent self-healing materials suitable for oil well cement”, Energies, vol. 15, no. 20, p. 7630, 2022. https://doi.org/10.3390/en15207630.
Basarh Oil Company (BOC), “Report of Cement Log Evaluation”, 2019.
API, “Cements and Materials for Well Cementing”, 25th ed.; American Petroleum Institute, Washington, DC, USA, 2019.
Q. Zhang, Y. Li, Q. Chen, Y. Liu, Y. Feng, and D. Wang, “Effects of temperatures and pH values on rheological properties of cemented paste backfill”, Journal of Central South University, vol. 28, no. 6, pp. 1707–1723, 2021, https://doi.org/10.1007/s11771-021-4728-4.
M. A. Rakib, A. Hossain, M. H. Rashid, and C. Dutta, “Effect of Mixing Water PH on Concrete”, Proceedings of the 5th International Conference on Civil Engineering for Sustainable Development (ICCESD 2020), Khulna, Bangladesh, 2020. [Online]. Available: https://www.researchgate.net/publication/351811543.
D. W. Oxtoby, H. P. Gillis, and L. J. Butler, “Principles of modern chemistry”, Cengage AU, 2016.
API, “10B-2, Recommended Practice for Testing Well Cements”, American Petroleum Institute, 2013.
A. T. Bourgoyne, K. K. Millheim, M. E. Chenevert, and F. S. Young, “Applied drilling engineering”, vol. 2, Society of Petroleum Engineers Richardson, 1986. https://doi.org/10.2118/9781555630010.
H. A. Hadi and H. A. Ameer, “Experimental investigation of nano alumina and nano silica on strength and consistency of oil well cement”, Journal of Engineering, vol. 23, no. 12, pp. 51–69, 2017. https://doi.org/10.31026/j.eng.2017.12.04.
A. H. Assi, F. H. M. Almahdawi, and Q. A. Khalti, “The Influence of Glass Fiber and Milled Glass Fiber on the Performance of Iraqi Oil Well Cement”, Journal of Petroleum Research and Studies, vol. 11, no. 2, pp. 30-48, Jun. 2021. https://doi.org/10.52716/jprs.v11i2.496.
K. K. Salam, A. O. Arinkoola, B. Ajagbe, and O. Sanni, “Evaluation of thickening time of oil field class G cement slurry at high temperature and pressure using experimental design”, International Journal of Engineering Sciences, vol. 2, no. 8, pp. 361–367, 2013.
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2025 Harith F. Al Khafaji

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.