Comparison between Conventional and Metakaolin bi-functional Catalyst in the Hydrodesulfurization Operation
DOI:
https://doi.org/10.52716/jprs.v12i2.658Keywords:
Hydrodesulfurization, Kaolin, Alumina metakaolin, CoMo-AMK catalyst, GasoilAbstract
The present study investigates hydrodesulfurization (HDS) of gas oil with 9300 ppm (0.93 wt%) sulfur supplied from Al-Dura Refinery by using an economic catalyst prepared from raw mineral (kaolin clay) cemented by alumina as composite support alumina meta-kaolin (AMK). Characterization of the prepared catalyst was achieved by using Energy Dispersive X-Ray Analysis (EDAX), scanning electron microscopy (SEM), BET surface area, pore volume , Bulk density, X-ray diffraction analysis (XRD) and Fourier-transform infrared spectroscopy (FTIR). AMK was modified as a bifunctional catalyst with active metal (Co and Mo). The hydrodesulfurization (HDS) efficiency was evaluated and compared with the traditional catalyst (CoMo-Al2O3) in a hydrotreating reaction carried out in one stage reactor at temperature 375 oC, pressure 40 bar, LHSV 1hr-1, and H2/HC ratio 200 vol. ratio. 62.2% and 90% of hydrodesulfurization efficiency were achieved for prepared catalyst (CoMo-AMK) and commercial CoMo-Al2O3 respectively at the same operating conditions.
References
British petroleum, http//:www.bp.com/en/global/trading/crude-oil- andre fined-products/crudes/middle-east/basra-light.html, 2017.
Hussein, H. Q., Ali, S. M., Ahmed, B. A., Hussein, S. J., Ali, Y. M., & karim Ibrahim, S., "Hydrodesulfurization and Hydrodearomatization of Kerosene over high metal loading Ni w/γ-Al2O3 Catalyst”, Journal of Petroleum Research and Studies, 8(4), 28-46, 2018.
Al-zaqri, N., Alsalme, A., Adil, S.F., Alsaleh, A., Alshammari, S.G., Alresayes, S.I., Alotaibi, R., Al-Kinany, M. and Siddiqui, M.R.H., “Comparative catalytic evaluation of nickel and cobalt substituted phosphomolybdic acid catalyst supported on silica for hydrodesulfurization of thiophene”. Journal of Saudi Chemical Society, 21(8), pp. 965-973, 2017.
Grievink, J., & van Schijndel, J. “European Symposium on Computer Aided Process Engineering-12”, Elsevier, 2002.
Mendoza-Nieto, J. A., Calzada, L. A., Martínez-Klimov, M. E., & Klimova, T. E., “Trimetallic CoMoW and NiMoW Catalysts Supported on SBA-15 Materials for Hydrodesulfurization: Effect of the Support’s Composition and the Promoter’s Nature”. In 2019 North American Catalysis Society Meeting, NAM, 2019 June.
Al-Hammadi, S. A., Al-Amer, A. M., & Saleh, T. A., “Alumina-carbon nanofiber composite as a support for MoCo catalysts in hydrodesulfurization reactions”. Chemical Engineering Journal, 345, 242-251, 2018.
Alvarez-Galvan, M. C., Campos-Martin, J. M., & Fierro, J. L., “Transition metal phosphides for the catalytic hydrodeoxygenation of waste oils into green diesel”, Catalysts, 9(3), 293, 2019.
Han, W., Yuan, P., Fan, Y., Shi, G., Liu, H., Bai, D., & Bao, X., “Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic–organic hybrid nanocrystals as a superior precursor”, Journal of Materials Chemistry, 22(48), 25340-25353, 2012.
Vishwakarma, S. K., Sonochemical and impregnated Co-W/γ-Al2O3 catalysts: Performances and kinetic studies on hydrotreatment of light gas oil (Doctoral dissertation), 2007.
Mishra, T., “Transition metal oxide-pillared clay catalyst: synthesis to application”, In Pillared Clays and Related Catalysts (pp. 99-128). Springer, New York, NY, 2010.
Jankovič Ĺ, Dimos K, Bujdák J, Koutselas I, Madejová J, Gournis D, Karakassidesb M A, Komadel P. Physical Chemistry Chemical Physics, 2010, 12: 14236
Emam, E. A., “Clays as catalysts in petroleum refining industry”. ARPN Journal of Science and Technology, 3(4), 356-375, 2013.
Hinokuma, S., Kiritoshi, S., Kawabata, Y., Araki, K., Matsuki, S., Sato, T., & Machida, M., “Catalytic ammonia combustion properties and operando characterization of copper oxides supported on aluminum silicates and silicon oxides”. Journal of Catalysis, 361, 267-277, 2018.
Hao, W., Kashiwabara, T., Jin, R., Takahashi, Y., Gingras, M., Alessi, D. S., & Konhauser, K. O., “Clay minerals as a source of cadmium to estuaries. Scientific reports, 10(1), 1-11, 2020.
Al-Ani, F., & Al-Kindi, G., “Suitability of the Iraqi natural clay for the preparation of Al-Fe pillared-clays”, In MATEC Web of Conferences (Vol. 162, p. 05017). EDP Sciences, 2018.
Curini, M., Rosati, O., & Costantino, U., “Heterogeneous catalysis in liquid phase organic synthesis, promoted by layered zirconium phosphates and phosphonates”. Current Organic Chemistry, 8(7), 591-606, 2004.
Ding, Z., Kloprogge, J. T., Frost, R. L., Lu, G. Q., & Zhu, H. Y., “Porous clays and pillared clays-based catalysts”, Part 2: a review of the catalytic and molecular sieve applications. Journal of Porous Materials, 8(4), 273-293, 2001.
Jige, M., Takagi, T., Takahashi, Y., Kurisu, M., Tsunazawa, Y., Morimoto, K., & Tsukimura, K., “Fe-kaolinite in granite saprolite beneath sedimentary kaolin deposits: A mode of Fe substitution for Al in kaolinite”, American Mineralogist: Journal of Earth and Planetary Materials, 103(7), 1126-1135, 2018.
Wan, G., Duan, A., Zhao, Z., Huang, W., & Dou, T., “Preparation and catalytic performance of modified kaolin clay with big pore for the hydrodesulfurization of diesel”, Journal of Porous Materials, 15(2), 231-236, 2008.
Hensen, E. J. M., “Hydrodesulfurization catalysis and mechanism of supported transition metal sulfides”, Technische Universiteit Eindhoven, 2000.
Stokes, D., “Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VPÂ-ESEM)”. John Wiley & Sons, 2008.
Al-Kafagy, K. S., Shakor, Z. M., Al-Zaidi, B. Y., & Hussein, S. J., “Gasoil Hydro-desulfurization using Catalyst synthesized from Iraqi Kaolin Clay: Optimization with Response Surface Methodology (RSM)”, Engineering and Technology Journal, 39(5A), 836-845, 2021.
Parikh, D. M., “Solids drying: basics and applications”, Chemical Engineering, 121(4), 42-45, 2014.
Tramèr, M. R., Reynolds, D. J. M., Moore, R. A., & McQuay, H. J., “Impact of covert duplicate publication on meta-analysis: a case study”, Bmj, 315(7109), 635-640, 1997.
Wan, G., Duan, A., Zhao, Z., Huang, W., & Dou, T., “Preparation and catalytic performance of modified kaolin clay with big pore for the hydrodesulfurization of diesel”, Journal of Porous Materials, 15(2), 231-236, 2008.
Granizo, M. L., Blanco-Varela, M. T., & Martínez-Ramírez, S., “Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties”, Journal of Materials Science10, 42(9), 2934-2943, 2007.
Izhar, S., Uehara, S., Yoshida, N., Yamamoto, Y., Morioka, T., & Nagai, M., “Hydrodenitrogenation of fast pyrolysis bio-oil derived from sewage sludge on NiMo/Al2O3 sulfide catalyst”, Fuel processing technology, 101, 10-15, 2012.
Wang, X., Fan, J., Zhao, Z., Chen, Z., Zheng, P., Li, J., & Xu, C., “Hydro-upgrading performance of fluid catalytic cracking diesel over different crystal forms of alumina-supported CoMo catalysts”, Energy & Fuels, 31(7), 7456-7463, 2017.
Srifa, A., Faungnawakij, K., Itthibenchapong, V., Viriya-Empikul, N., Charinpanitkul, T., & Assabumrungrat, S., “Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst”, Bioresource technology, 158, 81-90, 2014.
Gruia, A., “Recent advances in hydrocracking In Practical Advances in Petroleum Processing”, Vol. I (C.S. Hsu, and P. R. Robinson, Eds.), Springer, New York, Chapter 8, 2006.
Stanislaus, A., Marafi, A., & Rana, M. S., “Recent advances in the science and technology of ultralow sulfur diesel (ULSD) production”, Catalysis today, 153(1-2), 1-68, 2010.
Frilund, C., Hiltunen, I., & Simell, P., “Activated Carbons for Syngas Desulfurization: Evaluating Approaches for Enhancing Low-Temperature H2S Oxidation Rate”, ChemEngineering, 5(2), 23, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Khlood S. AlKhafaji, Bashir Y. Al-Zaidi, Zaidoon M. Shakor, Sattar J. Hussein
This work is licensed under a Creative Commons Attribution 4.0 International License.