Synthesis and Characterization of High Surface Area Nano Titanium Dioxide

Authors

  • Dalya J. Ahmed Ahmed Iraqi Ministry of Oil, Petroleum Research & Development Center
  • Basim I. Al-abdaly Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
  • Sattar J. Hussein Iraqi Ministry of Oil, Petroleum Research & Development Center

DOI:

https://doi.org/10.52716/jprs.v11i4.563

Keywords:

TiO2, Nanoparticles, Sol-gel, Anatase, Al2O3

Abstract

TiO2 and TiO2-Al2O3 nanoparticles were synthesized via sol-gel method using hydrolysis of Titanium tetraisopropoxide (TTIP) with ethanol and water mixture as titania source. TiO2-Al2O3 Nano-composite was successfully synthesized using the sol-gel technique. Tetraisopropoxide and aluminium isopropoxide were used to prepare TiO2-Al2O3. All prepared samples calcination were conducted at different temperature (400 to 700) oC. The synthesized TiO2 and TiO2-Al2O3 nanocomposites were then characterized by XRD, AFM, BET surface area, SEM, XRF. XRD, the analysis showed that the presence of alumina (Al2O3) in the TiO2 has an effect on crystal size, particles size, surface area, and crystal phases; The XRD result revealed that the prepared TiO2 nanoparticles were anatase phase at 400oC, and 500oC, and transformed to rutile from 600oC to 700oC, but after addition of alumina TiO2 was of anatase phase, without any rutile at all calcination temperatures, also, the addition of alumina leads to a significant decrease in the crystal size, particles size, especially at high temperatures while the surface area of pure titanium was increased, and this corresponds to the results of the AFM and SEM. The best-obtained surface area was 355.18 m2/ gm. with 34.98 nm of average particle size at 500oC in comparison with pure nano titanium dioxide

References

Deotale Anjali Jain “Synthesis and Characterization of Some Metal Oxide Nanoparticles” Ph.D thesis, School of Physics Devi Ahilya Vishwavidhyalaya, Indore, India; (2014), (Retrieved in 15 Jul.2017).

Chikae, M., Idegami, K., Kerman, K., Nagatani, N., Ishikawa M., Takamura, Y., Tamiya,E., "Direct fabrication of catalytic metal nanoparticles onto the surface of a screen-printed carbon electrode" Electrochemistry Communicatons, 8, (2006). 1375-1380

Rodriguez, J.A., Liu, G., Jirsak, T., Hrbek, J., Chang, Z., Dvorak, J. and Maiti, A., Activation of gold on titania: Adsorption and reaction of SO2 on Au/TiO2 (110). Journal of the American Chemical Society, 124(18), pp.5242-5250, 2002.

Mao H, Qiu Z, Shen Z, Huang W. Hydrophobic associated polymer based silica nanoparticles composite with core-shell structure as a filtrate reducer for drilling fluid at ultra-high temperature. J Pet Sci Eng 2015; 129:1–14.

Hendraningrat L, Torseater O. Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems. Appl Nanosci 2015; 5:181–99.

Khalil M, Lee RL, Liu N. Hematite nanoparticles in aquathermolysis: a desulphurization study of thiophene. Fuel 2015; 145:214–20.

Munawar Khalil, Badrul Mohamed Jan, Chong Wen Tong, Mohammed Ali Berawi, “Advanced nanomaterials in oil and gas industry: Design, application and challenges”. Applied Energy 191; 287–310, 2017.

H. Topsoe, B.S. Clausen, F.E. Massoth, in: J.R. Anderson, M. Boudart (Eds.), “Catalysis Science and Technology”, vol.11, 1996.

Ghazi M. Abed, Abdulkareem M. A. Alsammarraie, Basim I. Al-Abdaly, “Cr-Gd co-doped TiO2 Nanoribbons as Photoanode in Making Dye Sensitized Solar Cell”. Nanoscience and Nanometrology, 3(1): 27-33, 2017.

Isao MOCHEDA and Ki-Hyouk CHO, “An Over View of Hydrodesulphurization and Hydrodenitrogenation”. Journal of Japan petroleum institute .47. (3).145-163, 2003.

Maricq, M. M., Chase, R. E., Xu, N. and Laing, P. M., “The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: Light duty diesel vehicles”. Environmental Science & Technology, 36: 283 – 289, 2002.

Zhu, W., Zhu, G., Li, H., Chao, Y., Chang, Y., Chen, G., and Han, C., "Oxidative desulfurization of fuel catalyzed by metal- 818based type ionic liquids", Molecular Catalysis A: Chemical 347:8-14, 2011.

Gray J.H. and Handwerk G. E., "Petroleum Refining Technology and Economics", 2nd Edition ed., Marcel Dekker, Inc, 1984.

Samya El-Sherbiny, Fatma Morsy, Marwa Samir, Osama A. Fouad. “Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment”. Appl Nanosci, 4:305–313, 2014.

Athapon Simpraditpan, Thanakorn Wirunmongkol, Wisuthchai Boonwatcharapunsakun, Sommai Pivsa-art, Churairat Duangduenb,Singto Sakulkhaemaruethai and Sorapong Pavasupree,(2011), Preparation of High Photocatalyst Mesoporous TiO2 from Nanosheets Using Autoclave Unit (Thai Made), Energy Procedia 9 , 440 – 445.

Ahmedzeki N S, Hussein SJ, Abdulnabi WA. “Recycling Waste Cans to Nano Gamma Alumina: Effect of the Calcination Temperature and pH” International Journal of Current Engineering and Technology. 2017 Jan .7.1.

E.Y. Kaneko, S.H. Pulcinelli , V. Teixeira da Silva , C.V. Santilli, “Sol–gel synthesis of titania–alumina catalyst supports”. Applied Catalysis A: General 235, 71–78, 2002.

G. Liang, L. He, H. Cheng et al., “The hydrogenation/dehydrogenation activity of supported Ni catalysts and their effect on hexitols selectivity in hydrolytic hydrogenation of cellulose,” Journal of Catalysis, vol. 309, pp. 468–476, 2014.

Q. Luo, M. Beller, and H. Jiao, “Formic acid dehydrogenation on surfaces—a review of computational aspect,” Journal of Theoretical and Computational Chemistry, vol. 12, no. 7, Article ID 1330001, 2013.

R. Palcheva, L. Dimitrov, G. Tyuliev, A. Spojakina, and K. Jiratova, “TiO2 nanotubes supported NiW hydrodesulphurization catalysts: characterization and activity,” Applied Surface Science, vol. 265, pp. 309–316, 2013.

Samira Bagheri, NurhidayatullailiMuhd Julkapli, and Sharifah Bee Abd Hamid, “Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis”, the Scientific World Journal, 2014.

G. Murali Dhar, B.N. Srinivas, M.S. Rana, Manoj Kumar, S.K. Maity, “Mixed oxide supported hydrodesulfurization catalysts-a review”, Catalysis Today 86, 45–60, 2003.

Koo, J. H. “Fundamentals, Properties, and Applications of Polymer Nanocomposites” Cambridge University Press, (2016), pg. 12. (Chapter.1, Retrieved in 13 May 2018).

Wang, Y., Wang, R., Guo, C., Miao, J., Tian, Y., Ren, T. and Liu, Q., “Pathdirected and maskless fabrication of ordered TiO2 nanoribbons”, Nanoscale, 4(5), pp.1545-1548, 2012.

Athapon Simpraditpan, Thanakorn Wirunmongkol, Wisuthchai Boonwatcharapunsakun, Sommai Pivsa-art, Churairat Duangduenb,Singto Sakulkhaemaruethai and Sorapong Pavasupree, “Preparation of High Photocatalyst Mesoporous TiO2 from Nanosheets Using Autoclave Unit (Thai Made)”, Energy Procedia 9 , 440 – 445, 2011.

Mehdi Karimi, Fakhry Seyedeyn-Azad and Jalal Abedi., “Removal of mercaptans from gas–oil using synthesised anatase form of TiO2 nanoparticles. the canadian journal of chemical engineering. Vol. 91, 2013.

Nadzirah, S., Foo, K.L. and Hashim, U., “Morphological reaction on the different stabilizers of titanium dioxide nanoparticles”, Int J Electrochem Sci, 10, pp.5498-5512, 2015.

Wenjie Zhang, Chuanguo Li and Ruyuan Li. (2015). Sol-gel Preparation of TiO2-Al2O3 Composite Materials to Promote Photocatalytic Activity. Nanoscience & Nanotechnology-Asia, 5, 8-14, 2015.

Marina Teixeira Laranjo, Natalia Carminati Ricardi, Leliz Ticona Arenas, Edilson Valmir Benvenutti , Matheus Costa de Oliveira , Marcos Jose´ Leite Santos , Tania Maria Haas Costa. “TiO2 and TiO2/SiO2 nanoparticles obtained by sol–gel method and applied on dye sensitized solar cells”, J Sol-Gel Sci Technol 72:273–281, 2014.

Petushkov, A., “Synthesis and Characterization of Nanocrystaline and Mesoporous Zeolites”, s.l.:Doctoral PhD. Dissertation, University of Iowa, 2011.

Ba-Abbad, M.M., et al.: Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int J Electrochem 7, 4871–4888, 2012.

Yung-Fang Chena, Chi-Young Lee, Ming-Yu Yeng, Hsin-Tien Chiu, “The effect of calcination temperature on the crystallinity of TiO2 nanopowders. Journal of Crystal Growth 247 363–370, 2003.

Samya El-Sherbiny, Fatma Morsy, Marwa Samir, Osama A. Fouad. “Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment”. Appl Nanosci, 4:305–313, 2014.

João Victor Marques Zoccal, Fábio de Oliveira Arouca, José Antonio Silveira Gonçalves. “Synthesis and characterization of TiO2 nanoparticles by the method pechini”. Materials Science Forum Vols 660-661: pp 385-390, 2010.

Ali Mahyar, Mohammad Ali Behnajade and Naser Modirshahla. “Characterization and photocatalytic activity of SiO2-TiO2 mixed oxide nanoparticles prepared by sol-gel method”, Indian Journal of chemistry, Vol. 49A, PP 1593-1600, 2010.

B.N.Srinivas, S.K.Maity, V.V.D.N.Prasad, M.S.Rana, Manoj Kumar, G.Murali Dhar and T.S.R.Prasada Rao, “Support effect studies on TiO2-Al2O3 mixed oxide hydroprocessing catalysts”, Studies in Surface Science and Catalysis, Vol. 113, 1998.

Chengwu Yang , Qian Zhang , Jun Li , Ruirui Gao , Zhe Li, Wei Huang, “Catalytic activity and crystal structure modification of Pd/ γ-Al2O3 –TiO2 catalysts with different Al2O3 contents”, Journal of Energy Chemistry. 25, 375–380, 2016.

Kaile Wang, Bolun Yang,Yu Liu, and Chunhai Yi, “Preparation of Ni2P/TiO2-Al2O3 and the Catalytic Performance for Hydrodesulfurization of 3-Methylthiophene”, Energy Fuels, 23, 4209–4214, 2009.

J.S. Tobin, A.J. Turinske, N. Stojilovic , A.F. Lotus b, G.G. Chase., “Temperature-induced changes in morphology and structure of TiO2-Al2O3 fibers”. Current Applied Physics 12, 919-923, 2012.

Wenjie Zhang, Ruyuan Li, HongboHe, “Synthesis ofMesoporous TiO2-Al2O3 Binary Oxides Photocatalyst by Sol-GelMethod Using PEG1000 as Template”. International Journal of Photoenergy, Volume 2012, Article ID 108175, 7 pages, 2012.

Sahbeni K, Sta I, Jlassi M, Kandyla M, Hajji M, Kompitsas M, and Dimassi W, “Annealing Temperature Effect on the Physical Properties of Titanium Oxide Thin Films Prepared by the Sol-Gel Method”. Journal of Physical Chemistry & Biophysics, Volume 7, Issue 3, 2017.

Dang Mau Chien, Nguyen Ngoc Viet, Nguyen Thi Kieu Van and Nguyen Thi Phuong Phong, “Characteristics modification of TiO2 thin films by doping with silica and alumina for self- cleaning application”. Journal of Experimental Nanoscience, Vol. 4, No. 3, 221–232, 2009.

Meryem Polat Gonullu, Hakan Ates, “The characteristic evolution of TiO2/Al2O3 bilayer films produced by ALD: Effect of substrate type and wide range annealing temperature”. Superlattices and Microstructures 142, 106529, 2020.

Manasi Manoj Karkare, “Choice of precursor not affecting the size of anatase TiO2 nanoparticles but affecting morphology under broader view”, Int Nano Lett. 4:111, 2014.

Sauvet, A.L., Baliteau, S., Lopez, C. and Fabry, P., “Synthesis and characterization of sodium titanates Na2Ti3O7 and Na2Ti6O13”. Journal of Solid State Chemistry, 177(12), pp.4508-4515, 2004.

Adawiya Haider, RiyadAl- Anbari, Ghadah Kadhim, Zainab Jameel, “iqSynthesis and photocatalytic activity for TiO2 nanoparticles as air purification”. MATEC Web of Conferences 162, 05006, 2018.

Huang, C., Bai, H., Huang, Y., Liu, S., Yen, S., & Tseng, Y., “Synthesis of neutral SiO2/TiO 2 hydrosol and its application as antireflective self-cleaning thin film”. International Journal of Photoenergy, 2012. http://doi.org/10.1155/2012/620764.

Yung-Fang Chena, Chi-Young Lee, Ming-Yu Yeng, Hsin-Tien Chiu, “The effect of calcination temperature on the crystallinity of TiO2 nanopowders”. Journal of Crystal Growth 247,363–370, 2003.

Yodyingyong, S., et al., “Physicochemical Properties of Nanoparticles Titania from Alcohol Burner Calcination”. Bull. Chem. Soc. Ethiop 25(2), 263–272 (ISSN 1011-3924), 2011.

Ali Amoozadeh ,Elham Tabrizian, Saeedeh Shahjoee, “Nickel(II) Schiff base complex supported on nano‐titanium dioxide: A novel straightforward route for preparation of supported Schiff base complexes applying 2,4‐ toluenediisocyanate”. Appl Organometal Chem. p(1 of 9), 2019.

Azadeh Ebrahimian Pirbazaria,b, Pejman Monazzama,, Behnam Fakhari Kisomi, “Co/TiO2 nanoparticles: preparation, characterization and its application for photocatalytic degradation of methylene blue”. Desalination and Water Treatment, 63, 283–292, February, 2016.

Bingbing Guan Jie Yu Siyao Guo, Shen Yua and Song Han, “Porous nickel doped titanium dioxide nanoparticles with improved visible light photocatalytic activity”. The Royal Society of Chemistry, Nanoscale Adv, 2, 1352–1357, 2020.

Venkatachalam, N.; Palanichamy, M.; Arabindoo, B., “Alkaline earth metal doped nanoporous TiO2 for enhanced photocatalytic mineralization of bisphenol-A. Catal” .Comm. 8, 1088-1093, 2007.

Venkatachalam, N.; Palanichamy, M.; Murugesan, V., “Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4- chlorophenol”. J. Mol. Catal. A,, 273, 177-185, 2007.

Ahmed, M. A., & Abdel-Messih, M. F., “Structural and nano-composite features of TiO2–Al2O3 powders prepared by sol–gel method”. Journal of Alloys and Compounds, 509(5), 2154-2159, 2011.

Huang Y X. and Senos M R mater Res Bull, 37. (2000), 99.

D.V Sridevi, V Ramesh, T Sakthivel, K Geetha, V Ratchagar, K Jagannathan, K Rajarajan, K Ramachadran, “Synthesis, Structural and Optical Properties of Co Doped TiO2 Nanocrystals by Sol-Gel Method. Mechanics”, Materials Science & Engineering Journal, Magnolithe, 9 (1), 10.2412/mmse.99.9.726. Hal-01496431, 2017.

Downloads

Published

2021-12-20

How to Cite

(1)
Ahmed, D. J. A.; Al-abdaly, B. I.; Hussein, S. J. Synthesis and Characterization of High Surface Area Nano Titanium Dioxide. Journal of Petroleum Research and Studies 2021, 11, 51-75.