تحسين اداء مبادل حراري مزدوج الانبوب باستخدام مائع نانوي اوكسيد الزنك
DOI:
https://doi.org/10.52716/jprs.v13i2.687الكلمات المفتاحية:
Effectiveness, nanofluid, Double pipe heat exchanger, Nusselt number.الملخص
The heat transfer of double tube heat exchanger under counter flow is experimentally investigated. Nanofluid and the pure water are used as cold and hot fluids respectively. ZnO nanoparticles of 30 nm diameter are dispersed in water to prepare nanofluid with mass concentrations of 0.5 and 1%. Cold nanofluid is flowing through the inner tube heat exchanger with 20°C temperature under 2, 4 and 6 lpm volume flow rate. The hot water enters the annular space of the heat exchanger at a temperature of 65°C and 4 lpm volume flow rate. To improve the performance of the heat exchanger, the experimental findings achieved using this sort of nanofluid will be compared to those obtained using pure water. The outcomes showed that employing nanofluid as the working fluid improved performance. When employing nanofluid, the highest heat exchanger effectiveness is 40 % for nanoparticles concentration of 0.5 % per mass and 54 % (with a mass concentration of 1 %) with a volume flow rate of 2 lpm.
المراجع
B. Zohuri, “Compact Heat Exchangers, Selection, Application, Design and Evaluation”, Springer, Cham., pp. 19-56, 2017.
A. M. Hussein, “Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger”, Experimental Thermal and Fluid Science, Vol. 88, pp. 37–45, 2017. DOI: https://doi.org/10.1016/j.expthermflusci.2017.05.015
A. M. Hussein, R. Bakar, K. Kadirgama, and K. Sharma, “Experimental Measurements of Nanofluids Thermal Properties”, Int. J. Automot. Mech. Eng., vol. 7, pp. 850–863, 2013. DOI: https://doi.org/10.15282/ijame.7.2012.5.0070
N. Nikkam, “Engineering nanofluids for heat transfer applications”, Doctoral thesis, KTH Royal Institute of Technology, p. xiii, 65, 2014.
Reza Aghayari, Heydar Maddah, Fatemeh Ashori, Afshin Hakiminejad, Mehdi Aghili, "Effect of nanoparticles on heat transfer in mini double-pipe heat exchangers in turbulent flow", Heat Mass Transfer, Vol. 51, pp. 301–306, 2015. https://doi.org/10.1007/s00231-014-1415-0
A. Mahrooghi, M. Moghiman,"Effect of nano particles on heat transfer in heat exchangers", Ciência e Natura, Santa Maria, vol. 37 Part 1, pp. 199−206, 2015.
Rajput Nitesh Singh, Pandey Rajat, Ishan Lav, Pankaj K. Pandey, "Experimental Studies of Nanofluid TiO2/CuO in a Heat Exchanger (Double Pipe)", Indian Journal of Science and Technology, Vol. 9, no. 31, pp. 1-6 August 2016. https://doi.org/10.17485/ijst/2016/v9i31/93623
N. Ahmed Talib, Mohammed salih Ahmed, Riaid Alsaeedi, Yaseen A. J. Almahdawi, "Computational analysis of double-pipe heat Exchanger with Nano-fluid", international conference on energy and thermal engineering, Yildiz Technical University, Istanbul, Turkey, 25-28 April 2017.
R. Aghayari, H. Madah, B. Keyvani, A. Moghadassi, & F. Ashori, “The effect of nanoparticles on thermal efficiency of double tube heat exchangers in turbulent flow”, International Scholarly Research Notices (ISRN) Mechanical Engineering, Article ID 274560, 5 pages, 2014. http://dx.doi.org/10.1155/2014/274560
V. Murali Krishna, "Heat Transfer Enhancement by using CuO-Water Nanofluid in a Concentric Tube Heat Exchanger-an Experimental Study", International Journal of Mechanical Engineering (IJME), Vol. 6, Issue 1, pp. 11-20, Dec - Jan 2017.
K. Ramachandran, A.M. Hussein, K. Kadirgama, D. Ramasamy, W.H. Azmi, F. Tarlochan, G. Kadirgam, “Thermophysical properties measurement of nano cellulose in ethylene glycol/water”, Applied Thermal Engineering, Vol. 123, pp. 1158–1165, 2017. https://doi.org/10.1016/j.applthermaleng.2017.05.067
A. M. Hussein, R. Bakar, K. Kadirgama, and K. Sharma, “Experimental Measurements of Nanofluids Thermal Properties”, Int. J. Automot. Mech. Eng., vol. 7, pp. 850–863, 2013. DOI: https://doi.org/10.15282/ijame.7.2012.5.0070
A. M. Hussein, K. V. Sharma, R. A. Bakar, K. Kadirgama, “The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube”, Journal of Nanomaterials, Vol. 2013, pp. 1–6, 2013. https://doi.org/10.1155/2013/859563
A.M. Hussein, K.V. Sharma, R. A. Bakar, K. Kadirgama, “The effect of cross sectional area of tube on friction factor and heat transfer nanofluid turbulent flow”, International Communications in Heat and Mass Transfer, vol. 47, pp. 49–55, 2013.
https://doi.org/10.1016/j.icheatmasstransfer.2013.06.007
R. Aghayari, H. Maddah, F. Ashori, A. Hakiminejad & M. Aghili, “Effect of nanoparticles on heat transfer in mini double-pipe heat exchangers in turbulent flow”, Heat Mass Transfer, vol. 51, pp. 301–306, 2015. https://doi.org/10.1007/s00231-014-1415-0
A. M. Hussein, K. V. Sharma, R. A. Bakar, & K. Kadirgama, “A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid”, Renewable and Sustainable Energy Reviews, vol. 29, pp. 734-743, 2014. https://doi.org/10.1016/j.rser.2013.08.014
A.M. Hussein, K.V. Sharma, R.A. Bakar, and K. Kadirgama, “Heat Transfer Enhancement with Nanofluids – A Review”, JMES, vol. 4, no. 1, pp. 452–461, 2013. DOI: https://doi.org/10.15282/jmes.4.2013.9.0042
L. Refaat, A.M. Hussein, “Heat transfer enhancement of alumina nanofluid flow in a Circular tube”, Al-Kitab Journal for Pure Sciences, vol. 2, no. 1, 2018.
S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluid” Journal of Heat Transfer, vol. 125, no. 4, pp. 567–574, 2003. https://doi.org/10.1115/1.1571080
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2023 مجلة البحوث والدراسات النفطية
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.