إزالة الكبريت من زيت الغاز باستخدام عملية المعاملة بالهيدروجين : دراسة مقارنة

المؤلفون

  • ستار جليل خسين Petroleum Research & Development Center, Iraqi Ministry of Oil, Baghdad, Iraq.

DOI:

https://doi.org/10.52716/jprs.v14i4.819

الملخص

تركز هذه الدراسة على عملية إزالة الكبريت بالهيدروجين لنوعين مختلفين من المواد المغذية: زيت الغاز ذو المحتوى المنخفض والعالي من الكبريت. الهدف هو إزالة الكبريت باستخدام عامل مساعد تجاري Co-Mo/γ-Al2O3 تم الحصول عليه من مصفى الدورة. خضع العامل المساعد لاختبارات تحديد الخصائص المختلفة، بما في ذلك المساحة السطحية  باستخدام تقنية BET ، قوة مقاومة السحق، واختبارات تركيب المكونات باستخدام الامتصاص الذري. وبالمثل، تم أيضًا تحديد خصائص المواد الخام قبل عملية التقييم. استكشفت الدراسة تأثير درجة الحرارة، السرعة الفراغية لكل ساعة (LHSV)، والضغط كظروف تشغيل لعملية إزالة الكبريت بالهيدروجين لزيت الغاز باستخدام العامل المساعد التجاري Co- Mo/γ-Al2O3 في وحدة ريادية التجريبية الموجودة في مركز البحث والتطوير النفطي. أظهرت النتائج أن تقليل LHSV أدى إلى زيادة في نسبة إزالة الكبريت. علاوة على ذلك، أظهرت زيادة درجة الحرارة اتجاهًا عامًا لزيادة نسبة إزالة الكبريت لكلا النوعين من زيت الغاز (الذي يحتوي على كبريت منخفض وعالي). تم ملاحظة هذه الاتجاهات ضمن ظروف التشغيل المثلى التي تشمل LHSV 1 ساعة-1، درجة حرارة 375 درجة مئوية، ضغط 35 بار، ونسبة 200 سم³ من غاز الهيدروجين إلى 200 سم³ من الهيدروكربونات. تسلط هذه النتائج الضوء على إمكانيات هذا العامل المساعد في معالجة الوقود الأثقل التي تحتوي على مركبات الكبريت المعقدة بشكل فعال.

المراجع

References:

E. E. A., "Optimization petroleum refining and the production of ulsg and ulsd, Bethesda, Maryland", mathproinc, pp. 35, 2011.

R. A. Meyers, "Handbook of petroleum refining processes", McGraw-Hill Education, 3rd edition (October 14, 2003).

A. Srivastav and V. C. Srivastava, “Adsorptive desulfurization by activated alumina”, J. Hazard. Mater., vol. 170, no. 2–3, pp. 1133–1140, 2009. https://doi.org/10.1016/j.jhazmat.2009.05.088

S. Mustapha, M. M. Ndamitso, A. S. Abdulkareem, J. O. Tijani, A. K. Mohammed, and D. T. Shuaib, “Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater”, Heliyon, vol. 5, no. 11, p. e02923, 2019. https://doi.org/10.1016/j.heliyon.2019.e02923

E. Naranov, O. Golubev, K. Zanaveskin, A. Guseva, P. Nikulshin, Y. Kolyagin, A. Maximov, and E. Karakhanov, “Ni-Based Nanoparticles on Mesoporous Silica Supports for Single-Stage Arsenic and Chlorine Removal during Diesel Fraction Hydrotreating”, ACS Omega, vol. 5, no. 12, pp. 6611–6618, 2020. https://doi.org/10.1021/acsomega.9b04373

K. AlKhafaji, Z. Shakor, B. Al-Zaidi, and S. Hussein, “Gasoil Hydro-desulfurization using Catalyst synthesized from Iraqi Kaolin Clay: Optimization with Response Surface Methodology (RSM)”, Eng. Technol. J., vol. 39, no. 5A, pp. 836–845, 2021. https://doi.org/10.30684/etj.v39i5A.1977

N. S. Ahmed zeki, S. J. Hussein, K. K. Aoyed, S. K. Ibrahim, and I. K. Mehawee, “Synthesis and Characterization of Co-Mo/γ-Alumina Catalyst from local Kaolin clay for Hydrodesulfurization of Iraqi Naphtha,” J. Pet. Res. Stud., vol. 11, no. 1, pp. 84–106, 2021. https://doi.org/10.52716/jprs.v11i1.431

X. Li, X. Wang, J. Ning, H. Wei, L. Hao, " Novel Impregnation–Deposition Method to Synthesize a Presulfided MoS2/Al2O3 Catalyst and Its Application in Hydrodesulfurization", ACS Omega, vol. 8, no. 2, pp. 2596-2606, 2023. https://doi.org/10.1021/acsomega.2c07123

S. Rangarajan and M. Mavrikakis, “On the Preferred Active Sites of Promoted MoS2 for Hydrodesulfurization with Minimal Organonitrogen Inhibition”, ACS Catal., vol. 7, no. 1, pp. 501–509, 2017. https://doi.org/10.1021/acscatal.6b02735

N. Arul Dhas, A. Ekhtiarzadeh, and K. S. Suslick, “Sonochemical preparation of supported hydrodesulfurization catalysts”, Journal of the American Chemical Society, vol. 123, no. 34, pp. 8310–8316, 2001. https://doi.org/10.1021/ja010516y

H. Q. Hussein, S. M. Ali, B. A. A. Altabbakh, S. J. Hussein, Y. M. Ali, and S. karim Ibrahim, "Hydrodesulfurization and Hydrodearomatization of Kerosene over high metal loading Ni w/γ-Al2O3 Catalyst", Journal of Petroleum Research and Studies, vol. 8, no. 4, pp. 28-46, Jul. 2021. https://doi.org/10.52716/jprs.v8i4.261

T. Kabe, W. Qian, S. Ogawa, and A. Ishihara, "Mechanism of hydrodesulfurization of dibenzothiophene on Co-Mo/Al2O3 and Co/Al2O3 catalyst by the use of radioisotope 35S tracer", Journal of Catalysis, vol. 143, no. 1, pp. 239-248, 1993. https://doi.org/10.1006/jcat.1993.1269

K. H. Choi, N. Kunisada, Y. Korai, I. Mochida, and K. Nakano, “Facile ultra-deep desulfurization of gas oil through two-stage or -layer catalyst bed”, Catal. Today, vol. 86, no. 1–4, pp. 277–286, 2003. https://doi.org/10.1016/S0920-5861(03)00413-9

M. Mapiour, V. Sundaramurthy, A. K. Dalai, and J. Adjaye, “Effects of the operating variables on hydrotreating of heavy gas oil: Experimental, modeling, and kinetic studies”, Fuel, vol. 89, no. 9, pp. 2536–2543, 2010. https://doi.org/10.1016/j.fuel.2010.02.024

S. A. Hosseini, M. Akbari, and J. Nikbakht, “Adsorptive desulfurization of oil derivatives using nanostructured Mg-Al layered double hydroxides: Experimental design and modeling”, Iranian Journal of Catalysis, vol. 8, no. 1, pp. 17–27, 2018.

Sing, K. S. W.. "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)" Pure and Applied Chemistry, vol. 57, no. 4, pp. 603-619, 1985. https://doi.org/10.1351/pac198557040603

B. Xu, T. Xiao, Z. Yan, X. Sun, J. Sloan, S. L. González-Cortés, F. Alshahrani, and M. L. H. Green, “Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system”, Microporous Mesoporous Mater., vol. 91, no. 1–3, pp. 293–295, 2006. https://doi.org/10.1016/j.micromeso.2005.12.007

A. H. A. K. Mohammed, H. K. Hussain, and T. M. Naife, “Hydrodesulfurization of Iraqi Atmospheric Gasoil by Ti-Ni-Mo/γ-Al2O3 Prepared Catalyst”, Journal of Engineering, vol. 23, no. 11, pp. 13–24, 2017. https://doi: 10.31026/j.eng.2017.11.02.

S. H. Ammar, "The effect of mass transfer resistance on the kinetics of catalytic hydrodesulfurization of thiophene over Pt/Al2O3", Journal of Petroleum Research and Studies, vol. 2, no. 1, pp. 89-97, Feb. 2011. https://doi.org/10.52716/jprs.v2i1.35.

K. Ghanbari, M. Mohammadi, and M. Tajerian, “The Effect of mass transfer resistance on the kinetics of Thiophene Desulfurization”, Petroleum & Coal, vol. 48, no. 2, pp. 33–36, 2006.

A. W. A. Al-ajeel and S. I. Al-sindy, “Alumina Recovery From Iraqi Kaolinitic Clay By Hydrochloric Acid Route”, Iraqi Bulletin of Geology and Mining, vol. 2, no. 1, pp. 67–76, 2006.

H. Silla, "Chemical process engineering design and economics", 1st Edition, CRC Press, p. 504, 2003. https://doi.org/10.1201/9780203912454

P. Steiner and E. A. Blekkan, “Catalytic hydrodesulfurization of a light gas oil over a NiMo catalyst: Kinetics of selected sulfur components”, Fuel Process. Technol., vol. 79, no. 1, pp. 1–12, 2002. https://doi.org/10.1016/S0378-3820(02)00016-4

T. C. Ho and G. E. Markley, “Property-reactivity correlation for hydrodesulfurization of prehydrotreated distillates”, Appl. Catal. A Gen., vol. 267, no. 1–2, pp. 245–250, 2004. https://doi.org/10.1016/j.apcata.2004.03.009

T. C. Ho, “Hydroprocessing catalysis on metal sulfides prepared from molecular complexes”, Catal. Today, vol. 130, no. 1, pp. 206–220, 2008. https://doi.org/10.1016/j.cattod.2007.06.076

S. T. Hussain, F. Zia, and M. Mazhar, “Modified nano supported catalyst for selective catalytic hydrogenation of edible oils”, Eur. Food Res. Technol., vol. 228, no. 5, pp. 799–806, 2009. https://doi.org/10.1007/s00217-008-0991-y

D. Bose, "Design Parameters for a Hydro desulfurization (HDS) Unit for Petroleum Naphtha at 3500 Barrels per Day", World Scientific News, vol. 9, pp. 88-100, 2015.

K. S. AlKhafaji, B. Y. Al-Zaidi, Z. M. Shakor, and S. J. Hussein, “Comparison between Conventional and Metakaolin bi-functional Catalyst in the Hydrodesulfurization Operation”, Journal of Petroleum Research and Studies, vol. 12, no. 2, pp. 64-80, Jun. 2022. https://doi.org/10.52716/jprs.v12i2.658

H. Qabazard, F. Abu-Seedo, A. Stanislaus, M. Andari, and M. Absi-Halabi, "Comparison between the performance of conventional and high-metal co-mo and ni-mo catalysts in deep desulfurization of kuwait atmospheric gas oil", Fuel science & technology international, vol. 13, no. 9, pp. 1135-1151, 1995. https://doi.org/10.1080/08843759508947728

C. Lin, H. Wang, Z. Li, B. Wang, X. Ma, S. Qin, and Q. Sun, “Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst”, Front. Chem. Sci. Eng., vol. 7, no. 1, pp. 88–94, 2013. https://doi.org/10.1007/s11705-013-1301-1

M. Kumar, F. Aberuagba, J. K. Gupta, K. S. Rawat, L. D. Sharma, and G. M. Dhar, “Temperature-programmed reduction and acidic properties of molybdenum supported on MgO-Al2O3 and their correlation with catalytic activity”, Journal of Molecular Catalysis A: Chemical, vol. 213, no. 2, pp. 217–223, 2004. https://doi.org/10.1016/j.molcata.2003.12.005

A. Borgna, E. J. M. Hensen, J. A. R. Van Veen, and J. W. Niemantsverdriet, "Intrinsic kinetics of thiophene HDS over a NiMo/SiO2 model catalyst", Preprints of Symposia-American Chemical Society, Division of Fuel Chemistry, Vol. 48, No. 2, pp. 60, 2003.

D. Laurenti, B. Phung-Ngoc, C. Roukoss, E. Devers, K. Marchand, L. Massin, L. Lemaitre, C. Legens A. Quoineaud, and M. Vrinat, “Intrinsic potential of alumina-supported CoMo catalysts in HDS: Comparison between γc, γt, and δ-alumina”, Journal of Catalysis, vol. 297, pp. 165–175, 2013. https://doi.org/10.1016/j.jcat.2012.10.006

M. I. Mohammed, A. A. Abdul Razak, and M. A. Shehab, “Synthesis of Nanocatalyst for Hydrodesulfurization of Gasoil Using Laboratory Hydrothermal Rig”, Arab. J. Sci. Eng., vol. 42, no. 4, pp. 1381–1387, 2017. https://doi.org/10.1007/s13369-016-2249-5

التنزيلات

منشور

2024-12-22

كيفية الاقتباس

(1)
Hussein, S. J. . إزالة الكبريت من زيت الغاز باستخدام عملية المعاملة بالهيدروجين : دراسة مقارنة. Journal of Petroleum Research and Studies 2024, 14, 94-110.