تحويل مخلفات النفط الخام الناتجة من حقل شرق بغداد النفطي إلى هيدروكربونات خفيفة باستخدام تقنية التكسير الحراري الخلاصة:
DOI:
https://doi.org/10.52716/jprs.v14i2.850الكلمات المفتاحية:
Thermal cracking; Environmental pollution; Waste crude oil; Hydrocarbon production; Oil field; Disposal pits.الملخص
ينتج حقل شرق بغداد النفطي كميات كبيرة من نفايات النفط الخام نتيجة لأنشطة عمليات الحفر والإنتاج، وتسبب هذه النفايات تأثيرا سلبيا على البيئة وصحة الإنسان. في البحث الحالي، تم تحويل نفايات النفط الخام ذات API= 13 إلى هيدروكربونات خفيفة عبر تقنية التكسير الحراري. تمت عملية التكسير الحراري في مفاعل دفعي عند درجات حرارة تتراوح بين 350-450 درجة مئوية في غياب الأكسجين. وعند كل درجة حرارة تراوحت ضغوط التفاعل بين (1-6) كجم/ سم2. علاوة على ذلك، استمر التحريك المستمر لخليط التفاعل داخل المفاعل أثناء عملية التكسير الحراري بسرعة 96 دورة في الدقيقة. أفضل إنتاج من الهيدروكربون السائل والغازات وفحم الكوك المنتج في الظروف المثلى كان 77.56% بالوزن، 9.3 بالوزن، و13.14 بالوزن، على التوالي. في الواقع، تعتبر هذه العملية رخيصة الثمن وبسيطة مع ارتفاع معدل إنتاج الهيدروكربون السائل بالإضافة إلى أنها مفيدة بيئياً.
المراجع
A. Tanimu, G. Tanimu, H. Alasiri, and A. Aitani, “Catalytic Cracking of Crude Oil: Mini Review of Catalyst Formulations for Enhanced Selectivity to Light Olefins,” Energy & Fuels, vol. 36, no. 10, pp. 5152–5166, May 2022. https://doi.org/10.1021/acs.energyfuels.2c00567
M. I. Naser, “Expended Polystyrene (EPS) Waste as Sorbent for Crude Oil Spill Cleanup: From Laboratory Experiments to Field Application”, Journal of Petroleum Research and Studies, vol. 7, no. 1, pp. 258–272, May 2017. https://doi.org/10.52716/jprs.v7i1.180
M. Shahbaz, N. Rashid, J. Saleem, H. Mackey, G. McKay, and T. Al-Ansari, “A review of waste management approaches to maximise sustainable value of waste from the oil and gas industry and potential for the State of Qatar”, Fuel, vol. 332, p. 126220, Jan. 2023. https://doi.org/10.1016/j.fuel.2022.126220
C. Quan, G. Zhang, L. Xu, J. Wang, and N. Gao, “Improvement of the pyrolysis products of oily sludge: Catalysts and catalytic process,” Journal of the Energy Institute, vol. 104, pp. 67–79, Oct. 2022. https://doi.org/10.1016/j.joei.2022.07.004
A. J. Imran and A. Abdul jabbar, “Increasing production of gasoline and diesel fuel in medium and small refineries to meet the needs of Iraqi market,” Journal of Petroleum Research and Studies, vol. 7, no. 2, pp. 46–57, May 2017. https://doi.org/10.52716/jprs.v7i2.187
A. Corma, L. Sauvanaud, Y. Mathieu, S. Al-Bogami, A. Bourane, and M. Al-Ghrami, “Direct crude oil cracking for producing chemicals: Thermal cracking modeling”, Fuel, vol. 211, pp. 726–736, Jan. 2018. https://doi.org/10.1016/j.fuel.2017.09.099
M. I. Ramirez, A. P. Arevalo, S. Sotomayor, and N. Bailon-Moscoso, “Contamination by oil crude extraction – Refinement and their effects on human health”, Environmental Pollution, vol. 231, pp. 415–425, Dec. 2017. https://doi.org/10.1016/j.envpol.2017.08.017
N. Asim, M. Badiei, M. Torkashvand, M. Mohammad, M. A. Alghoul, S. S. Gasaymeh, and K. Sopian, “Wastes from the petroleum industries as sustainable resource materials in construction sectors: Opportunities, limitations, and directions”, Journal of Cleaner Production, vol. 284, p. 125459, Feb. 2021. https://doi.org/10.1016/j.jclepro.2020.125459
A. Haruna, G. Tanimu, I. Ibrahim, Z. N. Garba, S. M. Yahaya, S. G. Musa, and Z. M. Aljunid, “Mitigating oil and gas pollutants for a sustainable environment – Critical review and prospects”, Journal of Cleaner Production, vol. 416, p. 137863, Sep. 2023. https://doi.org/10.1016/j.jclepro.2023.137863
X. Zhou, S. Li, Y. Wang, J. Zhang, Z. Zhang, C. Wu, X. Chen, X. Feng, Y. Liu, H. Zhao, H. Yan, and C. Yang, “Crude oil hierarchical catalytic cracking for maximizing chemicals production: Pilot-scale test, process optimization strategy, techno-economic-society-environment assessment”, Energy Conversion and Management, vol. 253, pp. 115149–115149, Feb. 2022. https://doi.org/10.1016/j.enconman.2021.115149
T. Kaminski and M. M. Husein, “Thermal cracking of atmospheric residue versus vacuum residue”, Fuel Processing Technology, vol. 181, pp. 331–339, Dec. 2018. https://doi.org/10.1016/j.fuproc.2018.10.014
G. Ali et al., “Production of Liquid Fuel from Polystyrene Waste: Process Optimization and Characterization of Pyrolyzates,” Combustion Science and Technology, pp. 1–14, Oct. 2021. https://doi.org/10.1080/00102202.2021.1985481
J. Hao, J. Zhang, Y. Qiao, and Y. Tian, “Effect of heating rate on thermal cracking characteristics and kinetics of Xinjiang oil sand bitumen by TG–FTIR,” AIP Conference Proceedings, 2017. https://doi.org/doi:10.1063/1.4992819
V. Milato, R. J. França, and M. R. C. Marques Calderari, “Co-pyrolysis of oil sludge with polyolefins: Evaluation of different Y zeolites to obtain paraffinic products”, Journal of Environmental Chemical Engineering, vol. 8, no. 3, p. 103805, Jun. 2020. https://doi.org/10.1016/j.jece.2020.103805
P. R. Kapadia, M. S. Kallos, and I. D. Gates, “A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen”, Fuel Processing Technology, vol. 131, pp. 270–289, Mar. 2015. https://doi.org/10.1016/j.fuproc.2014.11.027
Adnan, J. Shah, and M. R. Jan, “Polystyrene degradation studies using Cu supported catalysts”, Journal of Analytical and Applied Pyrolysis, vol. 109, pp. 196–204, Sep. 2014. https://doi.org/10.1016/j.jaap.2014.06.013
C. Quan, N. Gao, and Q. Song, “Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization”, Journal of Analytical and Applied Pyrolysis, vol. 121, pp. 84–92, Sep. 2016. https://doi.org/10.1016/j.jaap.2016.07.005
R. Pan, M. Ferreira Martins, and G. Debenest, “Pyrolysis of waste polyethylene in a semi-batch reactor to produce liquid fuel: Optimization of operating conditions,” Energy Conversion and Management, vol. 237, p. 114114, Jun. 2021. https://doi.org/10.1016/j.enconman.2021.114114
N. Heidarzadeh, S. Gitipour, and M. A. Abdoli, “Characterization of oily sludge from a Tehran oil refinery”, Waste Management & Research: The Journal for a Sustainable Circular Economy, vol. 28, no. 10, pp. 921–927, Sep. 2009. https://doi.org/10.1177/0734242x09345794
S. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on pyrolysis of plastic wastes”, Energy Conversion and Management, vol. 115, pp. 308–326, May 2016. https://doi.org/10.1016/j.enconman.2016.02.037
A. Al-Absi and S. S. Al-Khattaf, “Conversion of Arabian Light Crude Oil to Light Olefins via Catalytic and Thermal Cracking”, Energy & Fuels, vol. 32, no. 8, pp. 8705–8714, Jul. 2018. https://doi.org/10.1021/acs.energyfuels.8b01932
J. Hao, Y. Che, Y. Tian, D. Li, J. Zhang, and Y. Qiao, “Thermal Cracking Characteristics and Kinetics of Oil Sand Bitumen and Its SARA Fractions by TG–FTIR”, Energy & Fuels, vol. 31, no. 2, pp. 1295–1309, Jan. 2017. https://doi.org/10.1021/acs.energyfuels.6b02598
I. Ahmad, S. M. Sohail, H. Khan, R. Khan and W. Ahmad, “Characterization of Petroleum Crude Oils by Fourier Transform Infrared (FT-IR) and Gas Chromatography-Mass Spectrometerys”, Petroleum & Petrochemical Engineering Journal, vol. 2, no. 2, 2018. https://doi.org/10.23880/ppej-16000148
R. Almukhtar, S. I. Hammoodi, H. S. Majdi, and K. A. Sukkar, “Managing Transport Processes in Thermal Cracking to Produce High-Quality Fuel from Extra-Heavy Waste Crude Oil Using a Semi-Batch Reactor”, Processes, vol. 10, no. 10, p. 2077, Oct. 2022. https://doi.org/10.3390/pr10102077
O. E. Medina, J. Gallego, S. Cespedes, N. N. Nassar, T. Montoya, F. B. Corteś, and C. A. Franco, “Effect of pressure on thermo-oxidative reactions of saturates, aromatics, and resins (S-Ar-R) from extra-heavy crude oil”, Fuel, vol. 311, p. 122596, Mar. 2022. https://doi.org/10.1016/j.fuel.2021.122596
A. A. Arpia, W.-H. Chen, S. S. Lam, P. Rousset, and M. D. G. de Luna, “Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review”, Chemical Engineering Journal, vol. 403, p. 126233, Jan. 2021. https://doi.org/10.1016/j.cej.2020.126233
A. M. Awad, K. A. Sukkar, D. M. Jaed, “Deep Understanding of the Mechanism and Thermophysical Properties of Prepared Nanofluids Lube Oil Stock-60 with Al2O3 NPs”, Journal of Applied Sciences and Nanotechnology, vol. 2, no. 3, pp. 37–51, Sep. 2022. https://doi.org/10.53293/jasn.2022.4394.1107
Adnan, J. Shah, and M. R. Jan, “Effect of polyethylene terephthalate on the catalytic pyrolysis of polystyrene: Investigation of the liquid products”, Journal of the Taiwan Institute of Chemical Engineers, vol. 51, pp. 96–102, 2015. https://doi.org/10.1016/j.jtice.2015.01.015
A. López, I. de Marco, B. M. Caballero, M. F. Laresgoiti, and A. Adrados, “Influence of Time and Temperature on Pyrolysis of Plastic Wastes in a Semi-Batch Reactor”, Chemical Engineering Journal, vol. 173, no. 1, pp. 62–71, Sept. 2011. https://doi.org/10.1016/j.cej.2011.07.037
T. Narbeshuber, H. Vinek, and J. A. Lercher, “Monomolecular Conversion of Light Alkanes over H-ZSM-5”, Journal of Catalysis, vol. 157, no. 2, pp. 388–395, Dec. 1995. https://doi.org/10.1006/jcat.1995.1304
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 مجلة البحوث والدراسات النفطية
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.