Biotreatment of Industrial Pollutant (Carbon Dioxide) and its Role in Bioplastics Production

Authors

  • Iman H. Gatea Environment and Water and Renewable Energy Directorate, Ministry of Science and Technology, Baghdad, Iraq
  • Ansam S. Sabei Environment and Water and Renewable Energy Directorate, Ministry of Science and Technology, Baghdad, Iraq
  • Adnan H. Abbas Environment and Water and Renewable Energy Directorate, Ministry of Science and Technology, Baghdad, Iraq.
  • Rana F. Tawfeeq Environment and Water and Renewable Energy Directorate, Ministry of Science and Technology, Baghdad, Iraq
  • Ameena G. Abid Environment and Water and Renewable Energy Directorate, Ministry of Science and Technology, Baghdad, Iraq.
  • Adawiya B. Sabr Environment and Water and Renewable Energy Directorate, Ministry of Science and Technology, Baghdad, Iraq

DOI:

https://doi.org/10.52716/jprs.v14i3.878

Keywords:

Alcaligenes, Polyhydroxyalkanoates, CO2, Anaerobic bacteria, Biopolymers.

Abstract

Polyhydroxyalkanoates (PHAs) are a class of biopolymers with characteristics resembling those of petrochemical-based plastics that have gained recent attention and a growing amount of research effort due to their environmental friendliness. Numerous bacteria, including Alcaligenes spp., Pseudomonas spp., Staphylococcus spp., and algae create (PHAs) in the presence of carbon and limiting nutrients like nitrogen, and these biopolymers can successfully replace industrial plastics. Therefore, the goal of this study is to employ carbon dioxide, an industrial pollutant emitted into the environment, as a cheap carbon source to lower production costs and remove pollution at the same time. Only three of the nine bacterial isolates utilized were able to synthesize the polymer in the presence of CO2, and the best isolate was belonging to the genus Alcaligenes after 48 hours of incubation at 30°C and pH 7, which are the optimal conditions for polymer synthesis. Bacterial growth resulted in the production of 5.2gm/l of PHA and 6.2gm/l of biomass under these conditions.

References

References

M. A. Abed, “Penal protection for the environment from the effects of spilling oil on the ground”, Journal of Petroleum Research & Studies, vol. 13, no. 1, pp. 28-37, 2023. https://doi.org/10.52716/jprs.v13i1.752.

R. H. Almalke, “Commitment to environmental protection in accordance with the provisions of petroleum licensing contracts”, Journal of Petroleum Research & Studies, vol. 11, No. 1, pp. 100-118, 2021. https://doi.org/10.52716/jprs.v11i1.445.

E. Al-Zaidi, and X. Fan, “Effect of CO2 phase on its water displacements in a sandstone core sample: experimental study”, Journal of Petroleum Research & Studies, vol. 8, no. 2, pp. 76-91, 2018. https://doi.org/10.52716/jprs.v8i2.236.

T. Fukui and Y. Doi, “Cloning and analysis of the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae”, J. Bacteriol., vol. 179, no. 15, pp. 4821-4830, 1997. https://doi.org/10.1128/jb.179.15.4821-4830.1997

J. Quillaguamán, T. DoanVan, H. Guzmán, D. Guzmán, J. Martín, A. Everest and R. Hatti-Kaul, “Poly (3-hydroxybutyrate) production by Halomonas boliviensis in fed-batch culture”, Appl Microbiol Biotechnol, vol. 78, pp. 227-232, 2008. https://doi:10.1007/s00253-007-1297-x.

C. J. L. Rocha, E. Alvarez-Castillo, M. R. E. Yanez, C. Bengoechea, A. Guerrero and M. T. O. Ledesma, “Development of bioplastics from a microalgae consortium from wastewater”, Journal of Environmental Management, vol. 263, p. 110353, 2020. https://doi:10.1016/j.jenvman.2020.110353.

P. I. Nikel, A. de Almeida, E. C. Melillo, M. A. Galvagno and M. J. Pettinari, “New recombinant Escherichia coli strain tailored for the production of poly (3-hydroxybutyrate) from agro-industrial by-products”, Applied and Environmental Microbiology, vol. 72, no. 6, pp. 3949-3954, 2006. https://doi:10.1128/AEM.00044-06.

I. M. Shamsuddin, J. A. Jafar, A. S. A. Shawai, S. Yusuf, M. Lateefah and I. Aminu, “Bioplastics as Better Alternative to Petro plastics and Their Role in National Sustainability: A Review”, Advances in Bioscience and bioengineering, vol. 5, no. 4, pp. 63-70, 2017. https://doi:10.11648/j.abb.20170504.13.

X. Y. Zhou, X. X. Yuan, Z. Y. Shi, D. C. Meng, W. J. Jiang, L. P. Wu, J. C. Chen and G. Q. Chen, “Hyperproduction of poly (4-hydroxybutyrate) from glucose by recombinant Escherichia coli”, Microbial Cell Factories, vol. 11, article no. 54, 2012. https://doi:10.1186/1475-2859-11-54.

H. W. Ryu, S. K. Hann, Y. K. Chang and H. N. Chang, “Production of poly (3-hydroxyvutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation”, Biotechnology and bioengineering, vol. 55, no. 1, pp. 28-32, 1997. https://doi:10.1002/(SICI)1097-0290(19970705)55:1<28::AID-BIT4>3.0.CO;2-Z.

A. Larrañaga, J. Fernandez, A. Vega, A. Etxeberria, C. Ronchel, J. L. Adrio and J. R. Sarasua, “Crystallization and its effect on the mechanical properties of a medium chain length polyhydroxyalkanoate”, Biomedical Materials, vol. 39, pp. 87-94, 2014. https://doi.org/10.1016/j.jmbbm.2014.07.020

O. M. Hernández-Calderón, J. M. Ponce-Ortega, J. R. Ortiz-del-Castillo, M. E. Cervantes-Gaxiola, J. Milán-Carrillo, J., M. Serna-González, and E. Rubio-Castro, “Optimal Design of Distributed Algae-Based Biorefineries Using CO Emissions from Multiple Industrial Plants”, Industrial & Engineering Chemistry Research, vol. 55, no. 8, 2016. https://doi:10.1021/acs.iecr.5b01684.

A. J. Anderson and E. A. Dawes, Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates, Microbiological Reviews, vol. 54, no. 4, pp. 450-472, 1990. https://doi.org/10.1128/mr.54.4.450-472.1990

J. Choi and S. Y. Lee, “Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation”, Applied Microbiology and Biotechnology, vol. 51, no. 1, pp. 13-21, 1999. https://doi.org/10.1007/s002530051357.

I. Y. Lee, M. K. Kim, G. K. Kim, H. N. Chang and Y. H. Park, “Production of poly (β-hydroxybutyrate-co-β-hydroxy valerate) from glucose and valerate in Alcaligenes eutrophus”, Biotechnology Letters, vol. 17, pp. 571-574, 1995. https://doi.org/10.1007/BF00129379

A. Steinbuchel and S. Hein, “Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms”, Advances in Biochemical Engineering/Biotechnology, vol. 71, pp. 81-123, 2001. https://doi:10.1007/3-540-40021-4_3.

M. Zinn, B. Witholt and T. Egli, “Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate”, Advanced Drug Delivery Reviews, vol. 53, no. 1, pp. 5-21, 2001. https://doi:10.1016/s0169-409x(01)00218-6.

Y. Morinaga, S. Yamanaka, A. Ishizaki and Y. Hirose, “Growth characteristics and cell composition of Alcaligenes eutrophus in chemostat culture”, Agricultural and Biological Chemistry, vol. 42, no. 2, pp. 439-444, 1978. https://doi.org/10.1080/00021369.1978.10862993.

Y. Miura, M. Okazaki, K. Ohi, T. Nishimura and S. Komemushi, “Optimization of biomass productivity and substrate utility of a hydrogen bacterium, Alcaligenes hydrogenophilus”, Biotechnology and Bioengineering, vol. 24, no. 5, pp. 1173-1182, 1982. https://doi.org/10.1002/bit.260240514

H.G. Schlegel, “Aerobic hydrogen-oxidizing (Knallgas) bacteria”, Autotrophic bacteria, Science Tech Publishers, pp. 305-329, 1989.

E. U., “TransBio, Framework Program FP7 Project. Biotransformation of by-Products from Fruit and Vegetable Processing Industry into Valuable Bioproducts”, CORDIS - EU research results, 2012.

S. Y. Lee, J. Choi and H. H. Wong, “Recent advances in polyhydroxyalkanoate production by bacterial fermentation”, International Journal of Biological Macromolecules, vol. 25, no. 1-3, pp. 31-36, 1999. https://doi:10.1016/s0141-8130(99)00012-4.

B. La Scola, S. Khelaifia, J. C. Lagier and D. Raoult, "Aerobic culture of anaerobic bacteria using antioxidants: a preliminary report", European Journal of Clinical Microbiology & Infectious Diseases, vol. 33, no. 10, pp. 1781-178, 2014. https://doi:10.1007/s10096-014-2137-4

P. Singh and N. Parmar, “Isolation and characterization of two novel polyhydroxybutyrate (PHB)-producing bacteria”, African journal of biotechnology, vol. 10, no. 24, pp. 4907-4919, 2011.

A. Pal, A. Prabhu, A. A. Kumar, B. Rajagopal, K. Dadhe, V. Ponnamma, and S. Shivakumar, “Optimization of process parameters for maximum poly-β-hydroxybutyrate production by Bacillus thuringiensis IAM 12077”, Polish J. Microbiolgy, vol. 58, no. 2, pp. 149-154, 2009.

M. J. Leboffe, and B. E. Pierce, “photographic Atlas for the Microbiology Laboratory”, 5th Edition, Morton Publishing Company, 2016.

G. Penloglou, C. Chatzidoukas and C. Kiparissides, “Microbial production of polyhydroxybutyrate with tailor-made properties: An integrated modelling approach and experimental validation”, Biotechnology Advances, vol. 30, no. 1, pp. 329-337, 2012. https://doi:10.1016/j.biotechadv.2011.06.021.

P. Damle and V. K. Vaidya, “Isolation, Identification and Characterization of Polyhydroxybutyrate Producing Bacillus Flexus”, International Journal of Engineering Sciences & Research Technology, vol. 5, no. 11, pp. 106-114, 2016. https://doi:10.5281/zenodo.164908.

G. R. Carter, and J. R. Cole Jr, “Diagnostic Procedure in Veterinary Bacteriology and Mycology (Fifth Edition)”, Diagnostic Procedure in Veterinary Bacteriology and Mycology, pp. 87-948, 2012.

G. Flora, K. Bhatt and U. Tuteja, “Optimization of culture conditions form poly Â-Hydroxybutyrate production from isolated Bacillus species”, Journal of Cell and Tissue Research, vol. 10, pp. 2235-2242, 2010.

F. Wang and S. Y. Lee, “Poly (3-hydroxybutyrate) production with high productivity and high polymer content by a Fed-batch culture of Alcaligenes latus under nitrogen limitation”, Applied and environmental microbiology, vol. 63, no. 9, pp. 3703-3706, 1997. https://doi.org/10.1128/aem.63.9.3703-3706.1997

R.P. Mahato, S. Kumar and P. Singh, “Optimization of Growth Conditions to Produce Sustainable Polyhydroxyalkanoate Bioplastic by Pseudomonas aeruginosa EO1”, Frontiers in Microbiology, vol. 12, (711588), pp. 1-9, 2021. https://doi:10.3389/fmicb.2021.711588.

A. W. Danial, S. M. Hamdy, S. A. Alrumman, S. M. F. Gad El-Rab, A. A. M. Shoreit and A. E. L. Hesham, “Bioplastic Production by Bacillus wiedmannii AS-02 OK576278 Using Different Agricultural Wastes”, Microorganisms, vol. 9, no. 11, p. 2395, 2021. https://doi:10.3390/microorganisms9112395.

G. G. Biradar, C. T. Shivasharana and B. B. Kaliwal, “Isolation and characterization of polyhydroxybutyrate (PHB) producing Bacillus species from agricultural soil”, European Journal of Experimental Biology, vol. 5, no. 3, pp. 58-65, 2015.

N. Sadaf and D. C. Kamthane, “PHB production from bacteria isolated from oil contaminated soil”, Bioscience Discovery, vol. 10, no. 2, pp. 103-107, 2019.

T. G. Volova, G. S. Kalacheva and O. V. Altukhova, “Autotrophic synthesis of polyhydroxyalkanoates by the bacteria Ralstonia eutropha in the presence of carbon monoxide”, Applied Microbiology and Biotechnology, vol. 58, pp. 675-678, 2002. https://doi:10.1007/s00253-002-0941-8.

S. M. El-Kadi, M. Elbagory, H. A. H. EL-Zawawy, H. F. A. EL-Shaer, A. A. Shoukry, S. El-Nahrawy, A. E. D. Omara and D. F. I. Ali, “Biosynthesis of Poly-ß-Hydroxybutyrate (PHB) from Different Bacterial Strains Grown on Alternative Cheap Carbon Sources”, Polymers, vol. 13, no. 21, (3801), pp. 1-20, 2021. https://doi:10.3390/polym13213801.

A. H. Westlie, E. C. Quinn, C. R. Parker, and E. Y. X. Chen, “Synthetic biodegradable polyhydroxyalkanoates (PHAs): Recent advances and future challenges”, Progress in Polymer Science, vol. 134, 101608, 2022. https://doi:10.1016/j.progpolymsci.2022.101608.

P. M. Halami, “Production of polyhydroxyalkanoate from starch by the native isolates Bacillus cereus CFR06”, World Journal of Microbiology and Biotechnology, vol. 24, pp. 805-812, 2008. https://doi:10.1007/s11274-007-9543-z.

Muhammadi, Shabina, M. Afzal, and S. Hameed, “Bacterial polyhydroxyalkanoates eco-friendly next-generation plastic: Production, biocompatibility, biodegradation, physical properties, and application”, Green Chemistry Letters and Reviews, vol. 8, no. 3-4, pp. 56-77, 2015. https://doi.org/10.1080/17518253.2015.1109715.

Downloads

Published

2024-09-22

How to Cite

(1)
Gatea, I. H. .; Sabei, A. S. .; Abbas, A. H. .; Tawfeeq, R. F. .; Abid, A. G. .; Sabr, A. B. . Biotreatment of Industrial Pollutant (Carbon Dioxide) and Its Role in Bioplastics Production . Journal of Petroleum Research and Studies 2024, 14, 105-120.